我试图在以下链接上运行提到的矩阵乘法示例(带有源代码):
http://www.norstad.org/matrix-multiply/index.html我在伪分布式模式下安装hadoop,我使用这个教程配置它:
http://hadoop-tutorial.blogspot.com/2010/11/running-hadoop-in-pseudo-distributed.html?showComment=1321528406255 c3661776111033973764
当我运行jar文件时,我得到以下错误:
Identity test
11/11/30 10:37:34 INFO input.FileInputFormat: Total input paths to process : 2
11/11/30 10:37:34 INFO mapred.JobClient: Running job: job_201111291041_0010
11/11/30 10:37:35 INFO mapred.JobClient: map 0% reduce 0%
11/11/30 10:37:44 INFO mapred.JobClient: map 100% reduce 0%
11/11/30 10:37:56 INFO mapred.JobClient: map 100% reduce 100%
11/11/30 10:37:58 INFO mapred.JobClient: Job complete: job_201111291041_0010
11/11/30 10:37:58 INFO mapred.JobClient: Counters: 17
11/11/30 10:37:58 INFO mapred.JobClient: Job Counters
11/11/30 10:37:58 INFO mapred.JobClient: Launched reduce tasks=1
11/11/30 10:37:58 INFO mapred.JobClient: Launched map tasks=2
11/11/30 10:37:58 INFO mapred.JobClient: Data-local map tasks=2
11/11/30 10:37:58 INFO mapred.JobClient: FileSystemCounters
11/11/30 10:37:58 INFO mapred.JobClient: FILE_BYTES_READ=114
11/11/30 10:37:58 INFO mapred.JobClient: HDFS_BYTES_READ=248
11/11/30 10:37:58 INFO mapred.JobClient: FILE_BYTES_WRITTEN=298
11/11/30 10:37:58 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=124
11/11/30 10:37:58 INFO mapred.JobClient: Map-Reduce Framework
11/11/30 10:37:58 INFO mapred.JobClient: Reduce input groups=2
11/11/30 10:37:58 INFO mapred.JobClient: Combine output records=0
11/11/30 10:37:58 INFO mapred.JobClient: Map input records=4
11/11/30 10:37:58 INFO mapred.JobClient: Reduce shuffle bytes=60
11/11/30 10:37:58 INFO mapred.JobClient: Reduce output records=2
11/11/30 10:37:58 INFO mapred.JobClient: Spilled Records=8
11/11/30 10:37:58 INFO mapred.JobClient: Map output bytes=100
11/11/30 10:37:58 INFO mapred.JobClient: Combine input records=0
11/11/30 10:37:58 INFO mapred.JobClient: Map output records=4
11/11/30 10:37:58 INFO mapred.JobClient: Reduce input records=4
11/11/30 10:37:58 INFO input.FileInputFormat: Total input paths to process : 1
11/11/30 10:37:59 INFO mapred.JobClient: Running job: job_201111291041_0011
11/11/30 10:38:00 INFO mapred.JobClient: map 0% reduce 0%
11/11/30 10:38:09 INFO mapred.JobClient: map 100% reduce 0%
11/11/30 10:38:21 INFO mapred.JobClient: map 100% reduce 100%
11/11/30 10:38:23 INFO mapred.JobClient: Job complete: job_201111291041_0011
11/11/30 10:38:23 INFO mapred.JobClient: Counters: 17
11/11/30 10:38:23 INFO mapred.JobClient: Job Counters
11/11/30 10:38:23 INFO mapred.JobClient: Launched reduce tasks=1
11/11/30 10:38:23 INFO mapred.JobClient: Launched map tasks=1
11/11/30 10:38:23 INFO mapred.JobClient: Data-local map tasks=1
11/11/30 10:38:23 INFO mapred.JobClient: FileSystemCounters
11/11/30 10:38:23 INFO mapred.JobClient: FILE_BYTES_READ=34
11/11/30 10:38:23 INFO mapred.JobClient: HDFS_BYTES_READ=124
11/11/30 10:38:23 INFO mapred.JobClient: FILE_BYTES_WRITTEN=100
11/11/30 10:38:23 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=124
11/11/30 10:38:23 INFO mapred.JobClient: Map-Reduce Framework
11/11/30 10:38:23 INFO mapred.JobClient: Reduce input groups=2
11/11/30 10:38:23 INFO mapred.JobClient: Combine output records=2
11/11/30 10:38:23 INFO mapred.JobClient: Map input records=2
11/11/30 10:38:23 INFO mapred.JobClient: Reduce shuffle bytes=0
11/11/30 10:38:23 INFO mapred.JobClient: Reduce output records=2
11/11/30 10:38:23 INFO mapred.JobClient: Spilled Records=4
11/11/30 10:38:23 INFO mapred.JobClient: Map output bytes=24
11/11/30 10:38:23 INFO mapred.JobClient: Combine input records=2
11/11/30 10:38:23 INFO mapred.JobClient: Map output records=2
11/11/30 10:38:23 INFO mapred.JobClient: Reduce input records=2
Exception in thread "main" java.io.IOException: Cannot open filename /tmp/Matrix Multiply/out/_logs
at org.apache.hadoop.hdfs.DFSClient$DFSInputStream.openInfo(DFSClient.ja va:1497)
at org.apache.hadoop.hdfs.DFSClient$DFSInputStream.<init>(DFSClient.java :1488)
at org.apache.hadoop.hdfs.DFSClient.open(DFSClient.java:376)
at org.apache.hadoop.hdfs.DistributedFileSystem.open(DistributedFileSyst em.java:178)
at org.apache.hadoop.io.SequenceFile$Reader.openFile(SequenceFile.java:1 437)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:142 4)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:141 7)
at org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:141 2)
at TestMatrixMultiply.fillMatrix(TestMatrixMultiply.java:62)
at TestMatrixMultiply.readMatrix(TestMatrixMultiply.java:84)
at TestMatrixMultiply.checkAnswer(TestMatrixMultiply.java:108)
at TestMatrixMultiply.runOneTest(TestMatrixMultiply.java:144)
at TestMatrixMultiply.testIdentity(TestMatrixMultiply.java:156)
at TestMatrixMultiply.main(TestMatrixMultiply.java:258)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAcces sorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:601)
at org.apache.hadoop.util.RunJar.main(RunJar.java:156)
谁能告诉我,我做错了什么?由于 它尝试读取作业输出。当您将其提交到集群时,它将添加这个_log目录。因为目录不是序列文件,所以它们不能被读取。
您必须更改读取此内容的代码。
我写了一个相等的脚本:
FileStatus[] stati = fs.listStatus(output);
for (FileStatus status : stati) {
if (!status.isDir()) {
Path path = status.getPath();
// HERE IS THE READ CODE FROM YOUR EXAMPLE
}
}
http://code.google.com/p/hama-shortest-paths/source/browse/trunk/hama-gsoc/src/de/jungblut/clustering/mapreduce/KMeansClusteringJob.java 127
这可能是一个原始的建议,但是,您可能需要使用/tmp/矩阵//_logs繁殖。目录名中的空格可能不会自动处理,我假设您在Linux上工作。
testmatrixmultiple .java有两个问题:
-
正如Thomas Jungblut所说,在readMatrix()方法中应该排除_logs。我把代码改成这样:
if (fs.isFile(path)) { fillMatrix(result, path); } else { FileStatus[] fileStatusArray = fs.listStatus(path); for (FileStatus fileStatus : fileStatusArray) { if ( !fileStatus.isDir() ) // this line is added by me fillMatrix(result, fileStatus.getPath()); } }
-
在main()方法的末尾,fs.delete应该被注释,否则每次mapreduce任务完成后,输出目录会被立即删除。
finally { //fs.delete(new Path(DATA_DIR_PATH), true); }