为了检测相机流上的对象,我应用了SURF算法。但是,我注意到流媒体的速度有点慢。当我使用windows API GetTickCount()
时,我发现这两个指令
detector.detect( image, kp_image );
extractor.compute( image, kp_image, des_image );
每帧大约1200毫秒。
这个问题有解决办法吗?提前感谢
完整代码如下:
#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string>
#include "opencv2/core/core.hpp"
#include "opencv2/nonfree/features2d.hpp"
#include "opencv2/features2d/features2d.hpp"
//#include "opencv2/legacy/legacy.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
using namespace cv;
using namespace std;
int main()
{
//reference image
Mat object = imread( "jus.png", CV_LOAD_IMAGE_GRAYSCALE );
if( !object.data )
{
std::cout<< "Error reading object " << std::endl;
return -1;
}
char key = 'a';
int framecount = 0;
SurfFeatureDetector detector( 400 );
SurfDescriptorExtractor extractor;
FlannBasedMatcher matcher;
Mat frame, des_object, image;
Mat des_image, img_matches, H;
std::vector<KeyPoint> kp_object;
std::vector<Point2f> obj_corners(4);
std::vector<KeyPoint> kp_image;
std::vector<vector<DMatch > > matches;
std::vector<DMatch > good_matches;
std::vector<Point2f> obj;
std::vector<Point2f> scene;
std::vector<Point2f> scene_corners(4);
//compute detectors and descriptors of reference image
detector.detect( object, kp_object );
extractor.compute( object, kp_object, des_object );
//cout<<"Info de lobjet: "<<object.dims<<" des_object, "<<des_object.dims<<" and kp_object: "<<kp_object.size()<<endl;
//create video capture object
VideoCapture cap(1);
//Get the corners from the object
obj_corners[0] = cvPoint(0,0);
obj_corners[1] = cvPoint( object.cols, 0 );
obj_corners[2] = cvPoint( object.cols, object.rows );
obj_corners[3] = cvPoint( 0, object.rows );
int before, after;
//wile loop for real time detection
while (1)
{
//capture one frame from video and store it into image object name 'frame'
cap >> frame;
if (framecount < 5)
{
framecount++;
continue;
}
//converting captured frame into gray scale
cvtColor(frame, image, CV_RGB2GRAY);
//extract detectors and descriptors of captured frame
before = GetTickCount();
detector.detect( image, kp_image );
extractor.compute( image, kp_image, des_image );
after = GetTickCount();
cout<<"Time of detection and extraction is: "<< after-before<<endl;
//cout<<"Info de limage: "<<image.dims<<" des_image, "<<des_image.dims<<" and kp_image: "<<kp_image.size()<<endl;
//find matching descriptors of reference and captured image
matcher.knnMatch(des_object, des_image, matches, 2);
//finding matching keypoints with Euclidean distance 0.6 times the distance of next keypoint
//used to find right matches
for(int i = 0; i < min(des_image.rows-1,(int) matches.size()); i++)
{
if((matches[i][0].distance < 0.6*(matches[i][1].distance)) && ((int) matches[i].size()<=2 && (int) matches[i].size()>0))
{
good_matches.push_back(matches[i][0]);
}
}
//drawKeypoints(object, kp_object, object);
//Draw only "good" matches
//drawMatches( object, kp_object, frame, kp_image, good_matches, img_matches,
//Scalar::all(-1), Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//3 good matches are enough to describe an object as a right match.
if (good_matches.size() >= 4)
{
for( int i = 0; i < good_matches.size(); i++ )
{
//Get the keypoints from the good matches
obj.push_back( kp_object[ good_matches[i].queryIdx ].pt );
scene.push_back( kp_image[ good_matches[i].trainIdx ].pt );
}
try
{
H = findHomography( obj, scene, CV_RANSAC );
}
catch(Exception e){}
perspectiveTransform( obj_corners, scene_corners, H);
//Draw lines between the corners (the mapped object in the scene image )
line( frame, scene_corners[0] /*+ Point2f( object.cols, 0)*/, scene_corners[1] /*+ Point2f( object.cols, 0)*/, Scalar(100, 0, 0), 4 );
line( frame, scene_corners[1] /*+ Point2f( object.cols, 0)*/, scene_corners[2] /*+ Point2f( object.cols, 0)*/, Scalar( 100, 0, 0), 4 );
line( frame, scene_corners[2] /*+ Point2f( object.cols, 0)*/, scene_corners[3] /*+ Point2f( object.cols, 0)*/, Scalar( 100, 0, 0), 4 );
line( frame, scene_corners[3] /*+ Point2f( object.cols, 0)*/, scene_corners[0] /*+ Point2f( object.cols, 0)*/, Scalar( 100, 0, 0), 4 );
}
//Show detected matches
imshow( "Good Matches", frame );
//clear array
good_matches.clear();
key = waitKey(33);
}
return 0;
}
- 在调用特征检测之前将帧大小调整为较小的大小。例如,将图像在每个维度上缩放0.5倍,将使您的函数运行速度提高4倍。
- 注意SURF检测器有一些可选参数:http://docs.opencv.org/modules/nonfree/doc/feature_detection.html#surf-surf。你可以减少八度的数量和一个八度内的层数来提高速度,但你可能不得不权衡对象检测性能。