如何将 sklearn 管道与自定义功能一起使用



我正在使用Python和sklearn进行文本分类。除了矢量化器之外,我还使用了一些自定义功能。我想知道是否可以将它们与 sklearn Pipeline 一起使用,以及这些功能将如何堆叠在其中。

我当前代码的简短示例,用于不使用管道的分类。请告诉我,如果你发现有什么问题,将非常感谢你的帮助。是否可以以某种方式将其与 sklearn 管道一起使用?我创建了自己的函数 get_features(),它提取自定义特征、转换矢量化器、缩放特征并最终堆叠所有特征。

import sklearn.svm
import re
from sklearn import metrics
import numpy
import scipy.sparse
import datetime
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.preprocessing import StandardScaler
# custom feature example
def words_capitalized(sentence):
    tokens = []
    # tokenize the sentence
    tokens = word_tokenize(sentence)
    counter = 0
    for word in tokens:
        if word[0].isupper():
            counter += 1
    return counter
# custom feature example
def words_length(sentence):
    tokens = []
    # tokenize the sentence
    tokens = word_tokenize(sentence)
    list_of_length = list()
    for word in tokens:
        list_of_length.append(length(word))
    return list_of_length
def get_features(untagged_text, value, scaler):
    # this function extracts the custom features
    # transforms the vectorizer
    # scales the features
    # and finally stacks all of them
    list_of_length = list()
    list_of_capitals = list()
    # transform vectorizer
    X_bow = countVecWord.transform(untagged_text)
    # I also see some people use X_bow = countVecWord.transform(untagged_text).todense(), what does the .todense() option do here?
    for sentence in untagged_text:
        list_of_urls.append([words_length(sentence)])
        list_of_capitals.append([words_capitalized(sentence)])
    # turn the feature output into a numpy vector
    X_length = numpy.array(list_of_urls)
    X_capitals = numpy.array(list_of_capitals)
    if value == 1:
        # fit transform for training set
        X_length = = scaler.fit_transform(X_length)
        X_capitals = scaler.fit_transform(X_capitals)
    # if test set
    else:
        # transform only for test set
        X_length = = scaler.transform(X_length)
        X_capitals = scaler.transform(X_capitals)
    # stack all features as a sparse matrix
    X_two_bows = scipy.sparse.hstack((X_bow, X_length))
    X_two_bows = scipy.sparse.hstack((X_two_bows , X_length))
    X_two_bows = scipy.sparse.hstack((X_two_bows , X_capitals))
    return X_two_bows
def fit_and_predict(train_labels, train_features, test_features, classifier):
    # fit the training set
    classifier.fit(train_features, train_labels)
    # return the classification result
    return classifier.predict(test_features)
if  __name__ == '__main__':
    input_sets = read_data()
    X = input_sets[0] 
    Y = input_sets[1] 
    X_dev = input_sets[2] 
    Y_dev = input_sets[3] 
    # initialize the count vectorizer
    countVecWord = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(1, 3))
    scaler= StandardScaler()
    # extract features
    # for training
    X_total = get_features(X, 1, scaler)
    # for dev set
    X_total_dev = get_features(X_dev,  2, scaler)
    # store labels as numpy array
    y_train = numpy.asarray(Y)
    y_dev = numpy.asarray(Y_dev)
    # train the classifier
    SVC1 = LinearSVC(C = 1.0)
    y_predicted = list()
    y_predicted = fit_and_predict(y_train, X_total, X_total_dev, SVC1)
    print "Result for dev set"
    precision, recall, f1, _ = metrics.precision_recall_fscore_support(y_dev, y_predicted)
    print "Precision: ", precision, " Recall: ", recall, " F1-Score: ", f1

我知道有FeatureUnion,但我不知道它是否可以用于我的目的,以及它是否会扩展和堆叠功能。

编辑:这似乎是一个好的开始:https://michelleful.github.io/code-blog/2015/06/20/pipelines/

还没有尝试过,当我这样做时会发布。现在的问题是,如何使用管道进行功能选择。

对于任何感兴趣的人,自定义要素类需要具有拟合和变换函数,然后才能在 FeatureUnion 中使用。有关详细示例,请查看我的另一个问题> 如何将不同的输入放入 sklearn 管道?

相关内容

  • 没有找到相关文章

最新更新