我正在使用Python和sklearn进行文本分类。除了矢量化器之外,我还使用了一些自定义功能。我想知道是否可以将它们与 sklearn Pipeline 一起使用,以及这些功能将如何堆叠在其中。
我当前代码的简短示例,用于不使用管道的分类。请告诉我,如果你发现有什么问题,将非常感谢你的帮助。是否可以以某种方式将其与 sklearn 管道一起使用?我创建了自己的函数 get_features(),它提取自定义特征、转换矢量化器、缩放特征并最终堆叠所有特征。
import sklearn.svm
import re
from sklearn import metrics
import numpy
import scipy.sparse
import datetime
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.svm import SVC
from sklearn.svm import LinearSVC
from nltk.tokenize import word_tokenize, sent_tokenize
from sklearn.preprocessing import StandardScaler
# custom feature example
def words_capitalized(sentence):
tokens = []
# tokenize the sentence
tokens = word_tokenize(sentence)
counter = 0
for word in tokens:
if word[0].isupper():
counter += 1
return counter
# custom feature example
def words_length(sentence):
tokens = []
# tokenize the sentence
tokens = word_tokenize(sentence)
list_of_length = list()
for word in tokens:
list_of_length.append(length(word))
return list_of_length
def get_features(untagged_text, value, scaler):
# this function extracts the custom features
# transforms the vectorizer
# scales the features
# and finally stacks all of them
list_of_length = list()
list_of_capitals = list()
# transform vectorizer
X_bow = countVecWord.transform(untagged_text)
# I also see some people use X_bow = countVecWord.transform(untagged_text).todense(), what does the .todense() option do here?
for sentence in untagged_text:
list_of_urls.append([words_length(sentence)])
list_of_capitals.append([words_capitalized(sentence)])
# turn the feature output into a numpy vector
X_length = numpy.array(list_of_urls)
X_capitals = numpy.array(list_of_capitals)
if value == 1:
# fit transform for training set
X_length = = scaler.fit_transform(X_length)
X_capitals = scaler.fit_transform(X_capitals)
# if test set
else:
# transform only for test set
X_length = = scaler.transform(X_length)
X_capitals = scaler.transform(X_capitals)
# stack all features as a sparse matrix
X_two_bows = scipy.sparse.hstack((X_bow, X_length))
X_two_bows = scipy.sparse.hstack((X_two_bows , X_length))
X_two_bows = scipy.sparse.hstack((X_two_bows , X_capitals))
return X_two_bows
def fit_and_predict(train_labels, train_features, test_features, classifier):
# fit the training set
classifier.fit(train_features, train_labels)
# return the classification result
return classifier.predict(test_features)
if __name__ == '__main__':
input_sets = read_data()
X = input_sets[0]
Y = input_sets[1]
X_dev = input_sets[2]
Y_dev = input_sets[3]
# initialize the count vectorizer
countVecWord = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(1, 3))
scaler= StandardScaler()
# extract features
# for training
X_total = get_features(X, 1, scaler)
# for dev set
X_total_dev = get_features(X_dev, 2, scaler)
# store labels as numpy array
y_train = numpy.asarray(Y)
y_dev = numpy.asarray(Y_dev)
# train the classifier
SVC1 = LinearSVC(C = 1.0)
y_predicted = list()
y_predicted = fit_and_predict(y_train, X_total, X_total_dev, SVC1)
print "Result for dev set"
precision, recall, f1, _ = metrics.precision_recall_fscore_support(y_dev, y_predicted)
print "Precision: ", precision, " Recall: ", recall, " F1-Score: ", f1
我知道有FeatureUnion,但我不知道它是否可以用于我的目的,以及它是否会扩展和堆叠功能。
编辑:这似乎是一个好的开始:https://michelleful.github.io/code-blog/2015/06/20/pipelines/
还没有尝试过,当我这样做时会发布。现在的问题是,如何使用管道进行功能选择。
对于任何感兴趣的人,自定义要素类需要具有拟合和变换函数,然后才能在 FeatureUnion 中使用。有关详细示例,请查看我的另一个问题> 如何将不同的输入放入 sklearn 管道?