如何注册和使用AVRO Schema for Kafka Connect和Spark



我不太明白如何注册架构以在 jdbc 源或接收器连接器中使用它并在 Spark 中读取数据

这是我想用来从 MS SQL 数据库中检索记录的 avro 架构

{
 "type": "record",
 "name": "myrecord",
 "fields": [
   { "name": "int1", "type": "int" },
   { "name": "str1", "type": "string" },
   { "name": "str2", "type": "string" }
 ]
} 

我想将此架构用于此源连接器

{"name": "mssql-source",
 "config": {
 "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",
 "key.converter": "io.confluent.connect.avro.AvroConverter",
 "key.converter.schema.registry.url": "http://localhost:8081",
 "value.converter": "io.confluent.connect.avro.AvroConverter",
 "value.converter.schema.registry.url": "http://localhost:8081",
 "incrementing.column.name": "int1",
 "tasks.max": "1",
 "table.whitelist": "Hello",
 "mode": "incrementing",
 "topic.prefix": "mssql-",
 "name": "mssql-source",
 "connection.url":
 "jdbc:sqlserver://XXX.XXX.X;databaseName=XXX;username=XX;password=XX"
 }

这是我正在使用的Spark Consumer。

import com.twitter.bijection.Injection;
import com.twitter.bijection.avro.GenericAvroCodecs;
import kafka.serializer.DefaultDecoder;
import kafka.serializer.StringDecoder;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
public class SparkAvroConsumer {

    private static Injection<GenericRecord, byte[]> recordInjection;
    private static final String USER_SCHEMA = "{"
            + ""type":"record","
            + ""name":"myrecord","
            + ""fields":["
            + "  { "name":"int1", "type":"int" },"
            + "  { "name":"str1", "type":"string" },"
            + "  { "name":"str2", "type":"string" }"
            + "]}";
    static {
        Schema.Parser parser = new Schema.Parser();
        Schema schema = parser.parse(USER_SCHEMA);
        recordInjection = GenericAvroCodecs.toBinary(schema);
    }
    public static void main(String[] args) {
        SparkConf conf = new SparkConf()
                .setAppName("kafka-sandbox")
                .setMaster("local[*]");
        JavaSparkContext sc = new JavaSparkContext(conf);
        JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(2000));
        Set<String> topics = Collections.singleton("mssql-Hello");
        Map<String, String> kafkaParams = new HashMap<>();
        kafkaParams.put("metadata.broker.list", "localhost:9092");
        kafkaParams.put("metadata.broker.list", "localhost:9092");
        kafkaParams.put("schema.registry.url", "http://localhost:8081");
        JavaPairInputDStream<String, byte[]> directKafkaStream = KafkaUtils.createDirectStream(ssc,
                String.class, byte[].class, StringDecoder.class, DefaultDecoder.class, kafkaParams, topics);
        directKafkaStream
                .map(message -> recordInjection.invert(message._2).get())
                .foreachRDD(rdd -> {
                    rdd.foreach(record -> {
                        System.out.println("int1= " + record.get("int1")
                                + ", str1= " + record.get("str1")
                                + ", str2=" + record.get("str2"));
                    });
                });
        ssc.start();
        ssc.awaitTermination();
    }
}

每个模式都有一个schemaId,当您将模式注册到 Confluent Schema Registry 时,它会为其创建 Int ID。该 ID 将附加到源系统发送的消息中。(检查此链接(。您可以使用CachedSchemaRegistryClientSchemaRegistry获取模式,您可以执行以下操作(其 Scala 代码(:

var schemaRegistry: SchemaRegistryClient = null
val url = "http://schema.registry.url:8181"
schemaRegistry = new CachedSchemaRegistryClient(url, 10)
val schema = schemaRegistry.getByID(schemaId) // consult the Schema Registry if you know the `SchemaId` in advance (you get this while registering your Schema)
//CachedSchemaRegistryClient have getAllSubjects API that will return all the schemas in your registry.
println(schema)

如果要从传入消息中获取架构 ID,请执行以下操作:

def getSchema(buffer: Array[Byte]): String = { //buffer is your incoming binary Avro message
    val url = "http://schema.registry.url:8181"
    val schemaRegistry = new CachedSchemaRegistryClient(url, 10)
    val bb = ByteBuffer.wrap(buffer)
    bb.get() // consume MAGIC_BYTE
    val schemaId = bb.getInt // consume schemaId //println(schemaId.toString)
    //println(schemaId.toString)
    schemaRegistry.getByID(schemaId) // consult the Schema Registry
}

我希望这有所帮助。

相关内容

  • 没有找到相关文章

最新更新