eql?
是一个严格的相等运算符,没有类型转换,==
是一个相等运算符,它试图将其参数转换为 String,并且,此方法的 C 源代码确认:
eql?
源代码:
static VALUE
rb_str_eql(VALUE str1, VALUE str2)
{
if (str1 == str2) return Qtrue;
if (TYPE(str2) != T_STRING) return Qfalse;
return str_eql(str1, str2);
}
==
源代码:
VALUE
rb_str_equal(VALUE str1, VALUE str2)
{
if (str1 == str2) return Qtrue;
if (TYPE(str2) != T_STRING) {
if (!rb_respond_to(str2, rb_intern("to_str"))) {
return Qfalse;
}
return rb_equal(str2, str1);
}
return str_eql(str1, str2);
}
但是当我尝试对这些方法进行基准测试时,我惊讶地发现==
比eql?
快了20%!我的基准代码是:
require "benchmark"
RUN_COUNT = 100000000
first_string = "Woooooha"
second_string = "Woooooha"
time = Benchmark.measure do
RUN_COUNT.times do |i|
first_string.eql?(second_string)
end
end
puts time
time = Benchmark.measure do
RUN_COUNT.times do |i|
first_string == second_string
end
end
puts time
结果:
红宝石 1.9.3-p125:
26.420000 0.250000 26.670000 ( 26.820762)
21.520000 0.200000 21.720000 ( 21.843723)
红宝石 1.9.2-p290:
25.930000 0.280000 26.210000 ( 26.318998)
19.800000 0.130000 19.930000 ( 19.991929)
那么,谁能解释为什么更简单的eql?
方法在我为两个相似的字符串运行它的情况下比==
方法慢?
您看到差异的原因与==
与eql?
的实现无关,而是因为 Ruby 优化了运算符(如 ==
),以避免在可能的情况下进行正常的方法查找。
我们可以通过两种方式验证这一点:
-
为
==
创建一个别名并改为调用该别名。您将获得与eql?
类似的结果,因此结果比==
慢。 -
使用
send :==
和send :eql?
进行比较,你会得到相似的时间;速度差异消失了,因为 Ruby 只会使用优化直接调用运算符,而不是使用send
或__send__
。
下面是显示两者的代码:
require 'fruity'
first = "Woooooha"
second = "Woooooha"
class String
alias same_value? ==
end
compare do
with_operator { first == second }
with_same_value { first.same_value? second }
with_eql { first.eql? second }
end
compare do
with_send_op { first.send :==, second }
with_send_eql { first.send :eql?, second }
end
结果:
with_operator is faster than with_same_value by 2x ± 0.1
with_same_value is similar to with_eql
with_send_eql is similar to with_send_op
如果您好奇,运算符的优化正在insns.def
。
注意:这个答案仅适用于Ruby MRI,例如,如果JRuby/rubinius存在速度差异,我会感到惊讶。
在做基准测试时,不要使用 times
,因为这会在RUN_COUNT
次上创建闭包。因此所花费的额外时间在绝对值上平等地影响所有基准,但这使得更难注意到相对差异:
require "benchmark"
RUN_COUNT = 10_000_000
FIRST_STRING = "Woooooha"
SECOND_STRING = "Woooooha"
def times_eq_question_mark
RUN_COUNT.times do |i|
FIRST_STRING.eql?(SECOND_STRING)
end
end
def times_double_equal_sign
RUN_COUNT.times do |i|
FIRST_STRING == SECOND_STRING
end
end
def loop_eq_question_mark
i = 0
while i < RUN_COUNT
FIRST_STRING.eql?(SECOND_STRING)
i += 1
end
end
def loop_double_equal_sign
i = 0
while i < RUN_COUNT
FIRST_STRING == SECOND_STRING
i += 1
end
end
1.upto(10) do |i|
method_names = [:times_eq_question_mark, :times_double_equal_sign, :loop_eq_question_mark, :loop_double_equal_sign]
method_times = method_names.map {|method_name| Benchmark.measure { send(method_name) } }
puts "Run #{i}"
method_names.zip(method_times).each do |method_name, method_time|
puts [method_name, method_time].join("t")
end
puts
end
给
Run 1
times_eq_question_mark 3.500000 0.000000 3.500000 ( 3.578011)
times_double_equal_sign 2.390000 0.000000 2.390000 ( 2.453046)
loop_eq_question_mark 3.110000 0.000000 3.110000 ( 3.140525)
loop_double_equal_sign 2.109000 0.000000 2.109000 ( 2.124932)
Run 2
times_eq_question_mark 3.531000 0.000000 3.531000 ( 3.562386)
times_double_equal_sign 2.469000 0.000000 2.469000 ( 2.484295)
loop_eq_question_mark 3.063000 0.000000 3.063000 ( 3.109276)
loop_double_equal_sign 2.109000 0.000000 2.109000 ( 2.140556)
Run 3
times_eq_question_mark 3.547000 0.000000 3.547000 ( 3.593635)
times_double_equal_sign 2.437000 0.000000 2.437000 ( 2.453047)
loop_eq_question_mark 3.063000 0.000000 3.063000 ( 3.109275)
loop_double_equal_sign 2.140000 0.000000 2.140000 ( 2.140557)
Run 4
times_eq_question_mark 3.547000 0.000000 3.547000 ( 3.578011)
times_double_equal_sign 2.422000 0.000000 2.422000 ( 2.437422)
loop_eq_question_mark 3.094000 0.000000 3.094000 ( 3.140524)
loop_double_equal_sign 2.140000 0.000000 2.140000 ( 2.140557)
Run 5
times_eq_question_mark 3.578000 0.000000 3.578000 ( 3.671758)
times_double_equal_sign 2.406000 0.000000 2.406000 ( 2.468671)
loop_eq_question_mark 3.110000 0.000000 3.110000 ( 3.156149)
loop_double_equal_sign 2.109000 0.000000 2.109000 ( 2.156181)
Run 6
times_eq_question_mark 3.562000 0.000000 3.562000 ( 3.562386)
times_double_equal_sign 2.407000 0.000000 2.407000 ( 2.468671)
loop_eq_question_mark 3.109000 0.000000 3.109000 ( 3.124900)
loop_double_equal_sign 2.125000 0.000000 2.125000 ( 2.234303)
Run 7
times_eq_question_mark 3.500000 0.000000 3.500000 ( 3.546762)
times_double_equal_sign 2.453000 0.000000 2.453000 ( 2.468671)
loop_eq_question_mark 3.031000 0.000000 3.031000 ( 3.171773)
loop_double_equal_sign 2.157000 0.000000 2.157000 ( 2.156181)
Run 8
times_eq_question_mark 3.468000 0.000000 3.468000 ( 3.656133)
times_double_equal_sign 2.454000 0.000000 2.454000 ( 2.484296)
loop_eq_question_mark 3.093000 0.000000 3.093000 ( 3.249896)
loop_double_equal_sign 2.125000 0.000000 2.125000 ( 2.140556)
Run 9
times_eq_question_mark 3.563000 0.000000 3.563000 ( 3.593635)
times_double_equal_sign 2.453000 0.000000 2.453000 ( 2.453047)
loop_eq_question_mark 3.125000 0.000000 3.125000 ( 3.124900)
loop_double_equal_sign 2.141000 0.000000 2.141000 ( 2.156181)
Run 10
times_eq_question_mark 3.515000 0.000000 3.515000 ( 3.562386)
times_double_equal_sign 2.453000 0.000000 2.453000 ( 2.453046)
loop_eq_question_mark 3.094000 0.000000 3.094000 ( 3.140525)
loop_double_equal_sign 2.109000 0.000000 2.109000 ( 2.156181)
equal? is reference equality
== is value equality
eql? is value and type equality
第三种方法eql?
通常用于测试两个对象是否具有相同的值以及相同的类型。例如:
puts "integer == to float: #{25 == 25.0}"
puts "integer eql? to float: #{25.eql? 25.0}"
gives:
Does integer == to float: true
Does integer eql? to float: false
所以我认为由于eql?
会做更多的检查,它会更慢,对于字符串来说,至少在我的 Ruby 1.93 上是这样。所以我认为它一定是类型相关的,并做了一些测试。当整数和浮点数进行比较时eql?
速度会快一些。当比较整数时==
要快得多,直到 x2。错误的理论,回到起点。
下一个理论:比较相同类型的两个值会更快,其中一个被证明是正确的,在它们属于同一类型的情况下==
总是更快,eql?
当类型不同时更快,再次直到 x2。
没有时间比较所有类型,但我相信你会得到不同的结果,尽管同样的比较总是给出类似的结果。有人能证明我是错的吗?
以下是我对 OP 测试的结果:
16.863000 0.000000 16.863000 ( 16.903000) 2 strings with eql?
14.212000 0.000000 14.212000 ( 14.334600) 2 strings with ==
13.213000 0.000000 13.213000 ( 13.245600) integer and floating with eql?
14.103000 0.000000 14.103000 ( 14.200400) integer and floating with ==
13.229000 0.000000 13.229000 ( 13.410800) 2 same integers with eql?
9.406000 0.000000 9.406000 ( 9.410000) 2 same integers with ==
19.625000 0.000000 19.625000 ( 19.720800) 2 different integers with eql?
9.407000 0.000000 9.407000 ( 9.405800) 2 different integers with ==
21.825000 0.000000 21.825000 ( 21.910200) integer with string with eql?
43.836000 0.031000 43.867000 ( 44.074200) integer with string with ==