如何在Keras中创建自定义目标函数



Keras中有许多目标函数。

但是如何创建自己的目标函数呢?我试图创建一个非常基本的目标函数,但它给出了一个错误,我无法知道运行时传递给函数的参数的大小。

def loss(y_true,y_pred):
    loss = T.vector('float64')
    for i in range(1):
        flag = True
        for j in range(y_true.ndim):
            if(y_true[i][j] == y_pred[i][j]):
                flag = False
        if(flag):
            loss = loss + 1.0
    loss /= y_true.shape[0]
    print loss.type
    print y_true.shape[0]
    return loss

,我有两个矛盾的错误

model.compile(loss=loss, optimizer=ada)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/models.py", line 75, in compile
    updates = self.optimizer.get_updates(self.params, self.regularizers, self.constraints, train_loss)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/optimizers.py", line 113, in get_updates
    grads = self.get_gradients(cost, params, regularizers)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/optimizers.py", line 23, in get_gradients
    grads = T.grad(cost, params)
  File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 432, in grad
    raise TypeError("cost must be a scalar.")
TypeError: cost must be a scalar.

它说函数中返回的成本或损失必须是标量,但如果我将第2行从损失=T矢量('float64')

损失=T.scalar('float64')

它显示了这个错误

 model.compile(loss=loss, optimizer=ada)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/models.py", line 75, in compile
    updates = self.optimizer.get_updates(self.params, self.regularizers, self.constraints, train_loss)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/optimizers.py", line 113, in get_updates
    grads = self.get_gradients(cost, params, regularizers)
  File "/usr/local/lib/python2.7/dist-packages/Keras-0.0.1-py2.7.egg/keras/optimizers.py", line 23, in get_gradients
    grads = T.grad(cost, params)
  File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 529, in grad
    handle_disconnected(elem)
  File "/usr/local/lib/python2.7/dist-packages/theano/gradient.py", line 516, in handle_disconnected
    raise DisconnectedInputError(message)
theano.gradient.DisconnectedInputError: grad method was asked to compute the gradient with respect to a variable that is not part of the computational graph of the cost, or is used only by a non-differentiable operator: <TensorType(float64, matrix)>

以下是我的小片段,用于编写新的损失函数并在使用之前对其进行测试:

import numpy as np
from keras import backend as K
_EPSILON = K.epsilon()
def _loss_tensor(y_true, y_pred):
    y_pred = K.clip(y_pred, _EPSILON, 1.0-_EPSILON)
    out = -(y_true * K.log(y_pred) + (1.0 - y_true) * K.log(1.0 - y_pred))
    return K.mean(out, axis=-1)
def _loss_np(y_true, y_pred):
    y_pred = np.clip(y_pred, _EPSILON, 1.0-_EPSILON)
    out = -(y_true * np.log(y_pred) + (1.0 - y_true) * np.log(1.0 - y_pred))
    return np.mean(out, axis=-1)
def check_loss(_shape):
    if _shape == '2d':
        shape = (6, 7)
    elif _shape == '3d':
        shape = (5, 6, 7)
    elif _shape == '4d':
        shape = (8, 5, 6, 7)
    elif _shape == '5d':
        shape = (9, 8, 5, 6, 7)
    y_a = np.random.random(shape)
    y_b = np.random.random(shape)
    out1 = K.eval(_loss_tensor(K.variable(y_a), K.variable(y_b)))
    out2 = _loss_np(y_a, y_b)
    assert out1.shape == out2.shape
    assert out1.shape == shape[:-1]
    print np.linalg.norm(out1)
    print np.linalg.norm(out2)
    print np.linalg.norm(out1-out2)

def test_loss():
    shape_list = ['2d', '3d', '4d', '5d']
    for _shape in shape_list:
        check_loss(_shape)
        print '======================'
if __name__ == '__main__':
    test_loss()

正如你所看到的,我正在测试二进制交叉熵损失,并定义了两个单独的损失,一个是numpy版本(_loss_np),另一个是tensor版本(_lass_tensor)[注意:如果你只使用keras函数,那么它将同时适用于Theano和Tensorflow…但如果你依赖其中一个,你也可以通过K.Theano.tensor.function或K.tf.function引用它们]

稍后,我将比较输出形状和输出的L2范数(应该几乎相等)以及差的L2范数

一旦你对你的损失功能正常工作感到满意,你可以将其用作:

model.compile(loss=_loss_tensor, optimizer=sgd)

(Answer Fixed)一个简单的方法是调用Keras后端:

import keras.backend as K
def custom_loss(y_true,y_pred):
    return K.mean((y_true - y_pred)**2)

然后:

model.compile(loss=custom_loss, optimizer=sgd,metrics = ['accuracy'])

等于

model.compile(loss='mean_squared_error', optimizer=sgd,metrics = ['accuracy'])

相关内容

  • 没有找到相关文章

最新更新