我不确定我应该在机器学习板上发布这个还是这个,但我选择了这个,因为我的问题更多地与优化有关。我正在尝试在 python 中从头开始构建 YOLO 模型,但每个卷积操作需要 10 秒。显然我做错了什么,因为 YOLO 应该非常快(能够实时产生结果(。我不需要网络实时运行,但如果在一个图像上运行需要几个小时,那么试图训练它将是一场噩梦。如何优化下面的代码?显然还有很大的改进空间。
这是我的卷积函数:
def convolve(image, filter, stride, modifier):
new_image = np.zeros ([image.shape[0], _round((image.shape[1]-filter.shape[1])/stride)+1, _round((image.shape[2]-filter.shape[2])/stride)+1], float)
#convolve
for channel in range (0, image.shape[0]):
filterPositionX = 0
filterPositionY = 0
while filterPositionX < image.shape[1]-filter.shape[1]+1:
while filterPositionY < image.shape[2]-filter.shape[2]+1:
sum = 0
for i in range(0,filter.shape[1]):
for j in range(0,filter.shape[2]):
if filterPositionX+i<image.shape[1] and filterPositionY+j<image.shape[2]:
sum += image[channel][filterPositionX+i][filterPositionY+j]*filter[channel][i][j]
new_image[channel][int(filterPositionX/stride)][int(filterPositionY/stride)] = sum*modifier
filterPositionY += stride
filterPositionX += stride
filterPositionY = 0
#condense
condensed_new_image = np.zeros ([new_image.shape[1], new_image.shape[2]], float)
for i in range(0, new_image.shape[1]):
for j in range(0, new_image.shape[2]):
sum = 0
for channel in range (0, new_image.shape[0]):
sum += new_image[channel][i][j]
condensed_new_image[i][j] = sum
condensed_new_image = np.clip (condensed_new_image, 0, 255)
return condensed_new_image
使用 7x7 滤镜在 448x448 灰度图像上运行该功能,步幅为 2 大约需要 10 秒。我的电脑有一个 i7 处理器。
为什么它很慢:因为你编码的函数的时间复杂度是O(n*n*n*k*k)
,其中图像大小为n*n
,过滤器大小为k*k
如何使其更快:避免循环并使用矩阵运算(矢量化(。矩阵运算是并行的。
因为它在普通的python代码中传递了很多;也就是说,你的操作是逐个元素执行的。您应该对它们进行矢量化。请查看本指南:https://wiseodd.github.io/techblog/2016/07/16/convnet-conv-layer/