无法使用keras实现层规范化



我试图在一个带keras的全连接神经网络中实现层归一化。我遇到的问题是,所有的损失都是NaN,它没有学习。下面是我的代码:

class DenseLN(Layer):
    def __init__(self, output_dim, init='glorot_uniform', activation='linear', weights=None,
                 W_regularizer=None, b_regularizer=None, activity_regularizer=None,
                 W_constraint=None, b_constraint=None, bias=True, input_dim=None, **kwargs):
        self.init = initializations.get(init)
        self.activation = activations.get(activation)
        self.output_dim = output_dim
        self.input_dim = input_dim
        self.epsilon = 1e-5        
        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)
        self.bias = bias
        self.initial_weights = weights
        self.input_spec = [InputSpec(ndim=2)]
        if self.input_dim:
            kwargs['input_shape'] = (self.input_dim,)
        super(DenseLN, self).__init__(**kwargs)
    def ln(self, x):
        # layer normalization function
        m = K.mean(x, axis=0)
        std = K.sqrt(K.var(x, axis=0) + self.epsilon)
        x_normed = (x - m) / (std + self.epsilon)
        x_normed = self.gamma * x_normed + self.beta
        return x_normed
    def build(self, input_shape):
        assert len(input_shape) == 2
        input_dim = input_shape[1]
        self.input_spec = [InputSpec(dtype=K.floatx(),
                                     shape=(None, input_dim))]
        self.gamma = K.variable(np.ones(self.output_dim) * 0.2, name='{}_gamma'.format(self.name)) 
        self.beta = K.zeros((self.output_dim,), name='{}_beta'.format(self.name))
        self.W = self.init((input_dim, self.output_dim),
                           name='{}_W'.format(self.name))
        if self.bias:
            self.b = K.zeros((self.output_dim,),
                             name='{}_b'.format(self.name))
            self.trainable_weights = [self.W, self.gamma, self.beta, self.b]
        else:
            self.trainable_weights = [self.W, self.gamma, self.beta]
        self.regularizers = []
        if self.W_regularizer:
            self.W_regularizer.set_param(self.W)
            self.regularizers.append(self.W_regularizer)
        if self.bias and self.b_regularizer:
            self.b_regularizer.set_param(self.b)
            self.regularizers.append(self.b_regularizer)
        if self.activity_regularizer:
            self.activity_regularizer.set_layer(self)
            self.regularizers.append(self.activity_regularizer)
        self.constraints = {}
        if self.W_constraint:
            self.constraints[self.W] = self.W_constraint
        if self.bias and self.b_constraint:
            self.constraints[self.b] = self.b_constraint
        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
    def call(self, x, mask=None):
        output = K.dot(x, self.W)
        output = self.ln(output)
        #print (theano.tensor.shape(output))
        if self.bias:
            output += self.b
        return self.activation(output)
    def get_output_shape_for(self, input_shape):
        assert input_shape and len(input_shape) == 2
        return (input_shape[0], self.output_dim)
model = Sequential()
model.add(Dense(12, activation='sigmoid', input_dim=12))
model.add(DenseLN(98, activation='sigmoid'))
model.add(DenseLN(108, activation='sigmoid'))
model.add(DenseLN(1))
adadelta = Adadelta(lr=0.1, rho=0.95, epsilon=1e-08)
adagrad = Adagrad(lr=0.003, epsilon=1e-08)
model.compile(loss='poisson',
              optimizer=adagrad,
              metrics=['accuracy'])
model.fit(X_train_scale,
          Y_train,
          batch_size=3000,
          callbacks=[history],
          nb_epoch=300)

你知道这里有什么问题吗?我该怎么解决?提前感谢!

编辑:

我也尝试了一些图层的组合,发现了一些奇怪的东西。如果输入和输出层都是正常的Dense层,则精度很低,接近于零。但是如果输入层是DenseLN,也就是我的自定义层,那么一开始的准确率是0.6+,经过几十次迭代后,再次降为零。事实上,我从Dense层复制了大部分代码,所有的区别是call函数中的ln函数和self.ln(output)。此外,我还将gammabeta添加到trainable_weights中。

任何帮助都是感激的!

如果将其实现为一个单独的层,则更干净,更灵活。像这样的代码应该可以工作:

class LayerNorm(Layer):
    """ Layer Normalization in the style of https://arxiv.org/abs/1607.06450 """
    def __init__(self, scale_initializer='ones', bias_initializer='zeros', **kwargs):
        super(LayerNorm, self).__init__(**kwargs)
        self.epsilon = 1e-6
        self.scale_initializer = initializers.get(scale_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
    def build(self, input_shape):
        self.scale = self.add_weight(shape=(input_shape[-1],), 
                                     initializer=self.scale_initializer,
                                     trainable=True,
                                     name='{}_scale'.format(self.name))
        self.bias = self.add_weight(shape=(input_shape[-1],),
                                    initializer=self.bias_initializer,
                                    trainable=True,
                                    name='{}_bias'.format(self.name))
        self.built = True
    def call(self, x, mask=None):
        mean = K.mean(x, axis=-1, keepdims=True)
        std = K.std(x, axis=-1, keepdims=True)
        norm = (x - mean) * (1/(std + self.epsilon))
        return norm * self.scale + self.bias
    def compute_output_shape(self, input_shape):
        return input_shape

相关内容

  • 没有找到相关文章

最新更新