按列排序并使用熊猫附加计数器



我有一个大型数据框(>1m 行,10+ 列(,我需要执行以下操作:

  • 按两列分组(示例中为AB(
  • 在分组内按另一列排序(示例中C(
  • 将增量计数器追加到另一列,按C的排序值的顺序递增(示例中为E(
  • 保留其他列未编辑(示例中D(

我有以下代码在工作,它给出了正确的结果。但是,它非常慢。谁能建议一些熊猫魔法来提高性能?

import pandas as pd
import numpy as np
np.random.seed(0)
A = list()
B = list()
C = list()
D = list()
E = list()
np_alphabet = np.array(list('ABCEEFGHIJKLMNOPQRSTUVWXYZ'), dtype="|S1")
np_codes = np.random.choice(np_alphabet, [5, 10])
for a in np_codes:
for b in range(2):
for i in range(5):
A.append(''.join(a))
B.append('{}_{}'.format(b, A[-1]))
C.append(np.random.rand())
D.append(i)
E.append(B[-1])
df = pd.DataFrame({
'A': A,
'B': B,
'C': C,
'D': D,
'E': E
})
df.set_index(['A', 'B'], drop=False, inplace=True)
df.sort_index(inplace=True)
print(df)
grouped_sizes = df.groupby(level=[0, 1]).size()
num_indices = grouped_sizes.shape[0]
print_num = max(1, num_indices // 20)
for idx in grouped_sizes.index:
if grouped_sizes[idx] > 1:
tmp_df = df.loc[idx].sort_values('C', inplace=False)
tmp_df['E'] = map(lambda x: '{}_{}'.format(*x), zip(range(1, tmp_df.size + 1), tmp_df['E']))
df.loc[idx] = tmp_df
else:
df.loc[idx, 'E'] = '1_{}'.format(df.loc[idx, 'E'])
print(df)

给出以下输出

# before
A             B         C  D             E
A          B                                                                
AXEJWVIZMZ 0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.954914  0  0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.758615  1  0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.952573  2  0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.903142  3  0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.154262  4  0_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.560586  0  1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.528869  1  1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.115331  2  1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.380718  3  1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.147092  4  1_AXEJWVIZMZ
BVBSPSACVA 0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.824997  0  0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.264456  1  0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.282663  2  0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.678287  3  0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.409996  4  0_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.149984  0  1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.711210  1  1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.840399  2  1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.804939  3  1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.290150  4  1_BVBSPSACVA
FHNMIRQRSP 0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.119058  0  0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.021955  1  0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.299527  2  0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.449371  3  0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.179845  4  0_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.075765  0  1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.413373  1  1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.835250  2  1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.371984  3  1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.265494  4  1_FHNMIRQRSP
TJSECSLWFT 0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.804553  0  0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.376646  1  0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.904908  2  0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.274501  3  0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.820866  4  0_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.886687  0  1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.198887  1  1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.857795  2  1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.326926  3  1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.116743  4  1_TJSECSLWFT
WXEKPQSLQK 0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.249891  0  0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.945414  1  0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.235062  2  0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.082703  3  0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.894169  4  0_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.595575  0  1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.769144  1  1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.917691  2  1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.567448  3  1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.832299  4  1_WXEKPQSLQK

# after
A             B         C  D               E
A          B                                                                  
AXEJWVIZMZ 0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.154262  4  1_0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.758615  1  2_0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.903142  3  3_0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.952573  2  4_0_AXEJWVIZMZ
0_AXEJWVIZMZ  AXEJWVIZMZ  0_AXEJWVIZMZ  0.954914  0  5_0_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.115331  2  1_1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.147092  4  2_1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.380718  3  3_1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.528869  1  4_1_AXEJWVIZMZ
1_AXEJWVIZMZ  AXEJWVIZMZ  1_AXEJWVIZMZ  0.560586  0  5_1_AXEJWVIZMZ
BVBSPSACVA 0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.264456  1  1_0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.282663  2  2_0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.409996  4  3_0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.678287  3  4_0_BVBSPSACVA
0_BVBSPSACVA  BVBSPSACVA  0_BVBSPSACVA  0.824997  0  5_0_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.149984  0  1_1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.290150  4  2_1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.711210  1  3_1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.804939  3  4_1_BVBSPSACVA
1_BVBSPSACVA  BVBSPSACVA  1_BVBSPSACVA  0.840399  2  5_1_BVBSPSACVA
FHNMIRQRSP 0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.021955  1  1_0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.119058  0  2_0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.179845  4  3_0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.299527  2  4_0_FHNMIRQRSP
0_FHNMIRQRSP  FHNMIRQRSP  0_FHNMIRQRSP  0.449371  3  5_0_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.075765  0  1_1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.265494  4  2_1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.371984  3  3_1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.413373  1  4_1_FHNMIRQRSP
1_FHNMIRQRSP  FHNMIRQRSP  1_FHNMIRQRSP  0.835250  2  5_1_FHNMIRQRSP
TJSECSLWFT 0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.274501  3  1_0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.376646  1  2_0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.804553  0  3_0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.820866  4  4_0_TJSECSLWFT
0_TJSECSLWFT  TJSECSLWFT  0_TJSECSLWFT  0.904908  2  5_0_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.116743  4  1_1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.198887  1  2_1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.326926  3  3_1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.857795  2  4_1_TJSECSLWFT
1_TJSECSLWFT  TJSECSLWFT  1_TJSECSLWFT  0.886687  0  5_1_TJSECSLWFT
WXEKPQSLQK 0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.082703  3  1_0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.235062  2  2_0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.249891  0  3_0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.894169  4  4_0_WXEKPQSLQK
0_WXEKPQSLQK  WXEKPQSLQK  0_WXEKPQSLQK  0.945414  1  5_0_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.567448  3  1_1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.595575  0  2_1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.769144  1  3_1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.832299  4  4_1_WXEKPQSLQK
1_WXEKPQSLQK  WXEKPQSLQK  1_WXEKPQSLQK  0.917691  2  5_1_WXEKPQSLQK

编辑:新的建议,时间安排和其他建议答案的测试

from __future__ import print_function, division
from timeit import Timer
import pandas as pd
import numpy as np

def create_df():
np.random.seed(0)
A = list()
B = list()
C = list()
D = list()
E = list()
np_alphabet = np.array(list('ABCEEFGHIJKLMNOPQRSTUVWXYZ'), dtype="|S1")
np_codes = np.random.choice(np_alphabet, [100, 10])
for a in np_codes:
for b in range(2):
for i in range(5):
A.append(''.join(a))
B.append('{}_{}'.format(b, A[-1]))
C.append(np.random.rand())
D.append(i)
E.append(B[-1])
df = pd.DataFrame({
'A': A,
'B': B,
'C': C,
'D': D,
'E': E
})
return df.copy()

def method1(df):
df.set_index(['A', 'B'], drop=False, inplace=True)
df.sort_index(inplace=True)
grouped_sizes = df.groupby(level=[0, 1]).size()
for idx in grouped_sizes.index:
if grouped_sizes[idx] > 1:
tmp_df = df.loc[idx].sort_values('C', inplace=False)
tmp_df['E'] = map(lambda x: '{}_{}'.format(*x), zip(range(1, tmp_df.size + 1), tmp_df['E']))
df.loc[idx] = tmp_df
else:
df.loc[idx, 'E'] = '1_{}'.format(df.loc[idx, 'E'])
return df

def method1a(df):
df.set_index(['A', 'B'], drop=False, inplace=True)
df.sort_values(['A', 'B', 'C'], inplace=True)
grouped_sizes = df.groupby(level=[0, 1]).size()
for idx in grouped_sizes.index:
if grouped_sizes[idx] > 1:
df.loc[idx, 'E'] = map(lambda x: '{}_{}'.format(*x), zip(range(1, grouped_sizes[idx] + 1), df.loc[idx, 'E']))
else:
df.loc[idx, 'E'] = '1_{}'.format(df.loc[idx, 'E'])
return df

def method2(df):
df.set_index(['A', 'B'], drop=False, inplace=True)
df['F'] = 0
df.sort_values(['A', 'B', 'C'], inplace=True)
grouped_sizes = df.groupby(level=[0, 1]).size()
for idx in grouped_sizes.index:
if grouped_sizes[idx] > 1:
df.loc[idx, 'F'] = range(1, grouped_sizes[idx] + 1)
else:
df.loc[idx, 'F'] = 1
df['E'] = df['F'].map(str) + '_' + df['E']
df.drop('F', axis=1, inplace=True)
return df

def method3(df):
df.set_index(['A', 'B'], drop=False, inplace=True)
df['F'] = 0
df.sort_values(['A', 'B', 'C'], inplace=True)
grouped_sizes = df.groupby(level=[0, 1]).size()
for idx in grouped_sizes.index:
if grouped_sizes[idx] > 1:
df.loc[idx, 'F'] = map(str, range(1, grouped_sizes[idx] + 1))
else:
df.loc[idx, 'F'] = '1'
df['E'] = df['F'] + '_' + df['E']
df.drop('F', axis=1, inplace=True)
return df

def method4(df):
prefixes = df.groupby(['A', 'B']).C.apply(pd.Series.argsort).add(1).astype(str)
df['E'] = prefixes + '_' + df.E
return df

def method5(df):
df.set_index(['A', 'B'], drop=False, inplace=True)
df.sort_values(['A', 'B', 'C'], inplace=True)
df['E'] = df.groupby(level=[0, 1]).cumcount().add(1).astype(str) + '_' + df['E']
return df

def assert_success(df):
row = df[(df['A'] == 'AEVFGIURPE') & (df['B'] == '0_AEVFGIURPE') & (df['D'] == 2)].iloc[0]
if not np.allclose(row['C'], 0.381397) or row['E'] != '3_0_AEVFGIURPE':
print('A: method{}() failed: {} != 0.871083 or {} != 5_1_XOYRFZNIJU'.format(func, row['C'], row['E']))
return
row = df[(df['A'] == 'XOYRFZNIJU') & (df['B'] == '1_XOYRFZNIJU') & (df['D'] == 1)].iloc[0]
if not np.allclose(row['C'], 0.871083) or row['E'] != '5_1_XOYRFZNIJU':
print('B: method{}() failed: {} != 0.871083 or {} != 5_1_XOYRFZNIJU'.format(func, row['C'], row['E']))
return

functions = list()
functions.append('1')
functions.append('1a')
functions.append('2')
functions.append('3')
functions.append('4')
functions.append('5')
for func in functions:
print('method{}'.format(func),
Timer(setup='from __main__ import create_df, assert_success, method{} as func'.format(func),
stmt='df = create_df(); df = func(df); assert_success(df)').repeat(number=10))

这将给出以下结果:

method1 [6.581194877624512, 6.625822067260742, 6.722187042236328]
method1a [1.9003210067749023, 1.9387969970703125, 1.9142169952392578]
method2 [0.9547598361968994, 0.9532740116119385, 0.9760739803314209]
method3 [1.0121638774871826, 1.0000989437103271, 0.9709858894348145]
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
B: method4() failed: 0.871082572438 != 0.871083 or 1_1_XOYRFZNIJU != 5_1_XOYRFZNIJU
method4 [0.3202958106994629, 0.3348369598388672, 0.33800482749938965]
method5 [0.11518096923828125, 0.10490703582763672, 0.09626197814941406]

我认为您首先需要sort_values,然后groupby+cumcount用于计数器,然后添加1并转换为str

df.sort_values(['A', 'B', 'C'], inplace=True)
df['E'] = df.groupby(level=['A','B']).cumcount().add(1).astype(str) + '_' + df['E']
print(df)
A             B         C  D               E
A          B                                                                  
MPVAEEHJTV 0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.264556  3  1_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.414662  2  2_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.521848  1  3_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.774234  4  4_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.944669  0  5_0_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.018790  2  1_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.456150  0  2_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.568434  1  3_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.612096  4  4_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.617635  3  5_1_MPVAEEHJTV
RTTTOHABJZ 0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.096098  2  1_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.097101  0  2_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.468651  4  3_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.837945  1  4_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.976459  3  5_0_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.039188  3  1_1_RTTTOHABJZ
...
...

编辑:

如果仅在列名与索引名相同时才按列定义levels,这似乎是错误的:

df['E'] = df.groupby(['A','B']).cumcount().add(1).astype(str) + '_' + df['E']

未来警告:"A"既是列名又是索引级别。
默认为列,但这会在将来的版本中引发歧义错误 df['E'] = df.groupby(column=['A','B'](.cumcount((.add(1(.astype(str( + '_' + df['E']

未来警告:"B"既是列名又是索引级别。 默认为列,但这会在将来的版本中引发歧义错误 df['E'] = df.groupby(column=['A','B'](.cumcount((.add(1(.astype(str( + '_' + df['E']

一种可能的解决方案是rename_axis如有必要,按列名分组(或重命名与索引名称相同的列(:

df.sort_values(['A', 'B', 'C'], inplace=True)
df = df.rename_axis(('A_lev','B_lev'))
df['E'] = df.groupby(['A','B']).cumcount().add(1).astype(str) + '_' + df['E']
print(df)
A             B         C  D               E
A_lev      B_lev                                                              
MPVAEEHJTV 0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.264556  3  1_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.414662  2  2_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.521848  1  3_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.774234  4  4_0_MPVAEEHJTV
0_MPVAEEHJTV  MPVAEEHJTV  0_MPVAEEHJTV  0.944669  0  5_0_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.018790  2  1_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.456150  0  2_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.568434  1  3_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.612096  4  4_1_MPVAEEHJTV
1_MPVAEEHJTV  MPVAEEHJTV  1_MPVAEEHJTV  0.617635  3  5_1_MPVAEEHJTV
RTTTOHABJZ 0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.096098  2  1_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.097101  0  2_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.468651  4  3_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.837945  1  4_0_RTTTOHABJZ
0_RTTTOHABJZ  RTTTOHABJZ  0_RTTTOHABJZ  0.976459  3  5_0_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.039188  3  1_1_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.282807  4  2_1_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.604846  1  3_1_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.739264  2  4_1_RTTTOHABJZ
1_RTTTOHABJZ  RTTTOHABJZ  1_RTTTOHABJZ  0.976761  0  5_1_RTTTOHABJZ
...
...

首先对数据帧进行排序,然后将.groupby()方法与.cumcount()一起使用:

df.sort_values(['A','B','C'], inplace = True)
df['D'] = df.groupby(['A','B']).cumcount()

如果要以其他方式对其进行排序,请向.sort_values()ascending = [True,True,False]提供一个ascending参数。如果您想保留数据的原始顺序,您实际上也不需要按 A 和 B 排序(它们仍将正确"排名"(。

一般评论:如果你发现自己在 pandas 中使用 for 循环来迭代数据,那么你很可能通过使用 pandas 的矢量化来大大加快你的代码速度。

相关内容

  • 没有找到相关文章

最新更新