如何提高四叉树代码的性能以防止程序冻结



我正在模拟两个星团的碰撞,所以基本上在C++做一个N体问题。我正在使用Barnes-Hut方法来帮助做到这一点。我已经编写了我的 QuadTree 代码和主代码来运行模拟,它一直工作到第 201-250 步,然后程序变得无响应。我不确定这是否只是一个性能问题,或者代码是否发生了令人讨厌的事情。有人可以查看它并解释为什么它冻结,或者如何提高性能吗?

以下是使用 Barnes-Hut 构建和计算 QuadTree 的代码:

#define threshold 1.0   // threshold for determining "far-ness"
// 0.5 for best results, higher means faster 
#define G 1.57633e-17   // ly^3 Msun^-1 s^-2, gravitational constant
struct Body {
double mass;
Vector3D position;
Vector3D velocity;
// makes a new body
Body(double m, Vector3D pos, Vector3D vel) : mass(m), position(pos), velocity(vel) {};
Body() : mass(0), position(0, 0, 0), velocity(0, 0, 0) {};
};
struct QuadTreeNode;
struct QuadTreeNode {
/* ---------- Stored Properties of this node ----------- */
// the total mass and CoM for all bodies inserted
// below this node in the tree
Body body;
// rescale positions to fit in nodes
// note: will need to have all bodies in
// at least positive coordinates to be included
// body.position.update(body.position.Getx()/scale, 
//                      body.position.Gety()/scale);
// scale defined in program
// the four subnodes / quadrants
QuadTreeNode* A = NULL;
QuadTreeNode* B = NULL;
QuadTreeNode* C = NULL;
QuadTreeNode* D = NULL;
// location+size parameters of each node (center)
double length;          // = 1.0 for depth = 0
double horiz_offset;    // = 0.5*length for depth = 0
double vert_offset;     // "                        "
// used to initialize root node parameters
bool root_node = true;
/* ----------------------------------------------------- */
// search which subnode a body is in
int Subnode(Body temp){
double x = temp.position.Getx();
double y = temp.position.Gety();
// define subnode boundaries
double node_xmax = this->horiz_offset + 0.5*this->length;
double node_xmin = this->horiz_offset - 0.5*this->length;
double node_ymax = this->vert_offset + 0.5*this->length;
double node_ymin = this->vert_offset - 0.5*this->length;
// 1 = first quadrant (A), 2 = second quadrant (B), etc.
if       ((x > (node_xmax/2.)) && (x < node_xmax) && 
(y > (node_ymax/2.)) && (y < node_ymax)){return(1);
}else if ((x > node_xmin) && (x < (node_xmax/2.)) && 
(y > (node_ymax/2.)) && (y < node_ymax)){return(2);
}else if ((x > node_xmin) && (x < (node_xmax/2.)) && 
(y > node_ymin) && (y < (node_ymax/2.))){return(3);
}else if ((x > (node_xmax/2.)) && (x < node_xmax) && 
(y > node_ymin) && (y < (node_ymax/2.))){return(4);
}else{
temp.mass = 0.0; 
return(0);
}
}
// define new parameters of subnodes
void createSubnodes(){
// 1st quadrant / subnode
this->A = new QuadTreeNode();
this->A->length = this->length/2.;
this->A->horiz_offset = this->horiz_offset + 0.25*this->length;
this->A->vert_offset = this->vert_offset + 0.25*this->length;
// 2nd quadrant / subnode
this->B = new QuadTreeNode();
this->B->length = this->length/2.;
this->B->horiz_offset = this->horiz_offset - 0.25*this->length;
this->B->vert_offset = this->vert_offset + 0.25*this->length;
// 3rd quadrant / subnode
this->C = new QuadTreeNode();
this->C->length = this->length/2.;
this->C->horiz_offset = this->horiz_offset - 0.25*this->length;
this->C->vert_offset = this->vert_offset - 0.25*this->length;
// 4th quadrant / subnode
this->D = new QuadTreeNode();
this->D->length = this->length/2.;
this->D->horiz_offset = this->horiz_offset + 0.25*this->length;
this->D->vert_offset = this->vert_offset - 0.25*this->length;
}
// insert body into specific subnode
void insert_Subnode(Body temp){
createSubnodes();
// subnodes are not a root node
this->A->root_node = false;
this->B->root_node = false;
this->C->root_node = false;
this->D->root_node = false;
// recursively insert body into new node 
if (Subnode(temp) == 1) {
this->A->insert(temp);
}
else if (Subnode(temp) == 2) {
this->B->insert(temp);
}
else if (Subnode(temp) == 3) {
this->C->insert(temp);
}
else if (Subnode(temp) == 4){
this->D->insert(temp);
}else return;
}
// check if current node is internal or external
bool is_internal(){
this->A = new QuadTreeNode();
this->B = new QuadTreeNode();
this->C = new QuadTreeNode();
this->D = new QuadTreeNode();
if (this->A->body.mass > 0) return true;
if (this->B->body.mass > 0) return true;
if (this->C->body.mass > 0) return true;
if (this->D->body.mass > 0) return true;
return false;   // this is an external node
}
// this is the main function for constructing the QuadTree
// insert body into this node
void insert(Body next) {    // consider the next body 
// to insert into this node
// if there's no body in this node, put the next body in here
if (this->body.mass == 0) {
this->body = next;
return;
}
// initialize to max values if this is a root node
if(this->root_node){
this->length = 1.0;
this->horiz_offset = 0.5*this->length;
this->vert_offset = 0.5*this->length;
}
// if this is an internal node
if (is_internal()) {
// update the node's body.location (CoM)
this->body.position = (this->body.mass*this->body.position 
+ next.mass*next.position)*(1./(this->body.mass + next.mass));
// update the node's body.mass
this->body.mass += next.mass;
// recursively insert the next body into appropriate subnode
insert_Subnode(next);           
} else {    // this is an external node
// since this->body.mass is not 0, then
// this node contains a body
// so then recursively insert this body
// and the next body into their appropriate subnodes
insert_Subnode(this->body);
insert_Subnode(next);
// then update this node's CoM and total mass
this->body.position = (this->body.mass*this->body.position 
+ next.mass*next.position)*(1./(this->body.mass + next.mass));
// update the node's body.mass
this->body.mass += next.mass;
}
return;
}

// Now we calculate the force on a body
// calculates gravitational force
Vector3D Fg(Body temp){
double M1, M2, dist;
Vector3D  Dr, F;
M1 = this->body.mass;
M2 = temp.mass;
// this takes the position vector difference
Dr =  temp.position - this->body.position;
// and this is the magnitude
dist = Dr.GetMagnitude();
if(dist == 0.0) return(Vector3D(0.0, 0.0, 0.0));    // do not divide by 0
// here is the gravitational force
F = (-G*M1*M2/(pow(dist,3.))) * Dr;
return(F);
}
// net force on the next body
Vector3D netforce_on(Body next) {
Vector3D Fnet(0.0, 0.0, 0.0);
Vector3D dvdt;
if ((!is_internal()) && (this->body.mass != next.mass)){
Fnet = Fnet + Fg(next);
}
else {
Vector3D Dr;
double dist;
Dr =  next.position - this->body.position;
dist = Dr.GetMagnitude();
// parameter to decide what is 'far'
double dist_ratio = (this->length) / dist;
if (dist_ratio < threshold){ // far enough
Fnet = Fnet + Fg(next);
} else{ // too close, check subnode forces
Fnet = Fnet + this->A->netforce_on(next);
Fnet = Fnet + this->B->netforce_on(next);
Fnet = Fnet + this->C->netforce_on(next);
Fnet = Fnet + this->D->netforce_on(next);
}
}
dvdt = (1./next.mass)*Fnet;
return(dvdt);
}
};

请注意,这使用一个名为 Vector3D 的类,该类主要用于物理矢量定义和操作。 以下是时间演变的主循环的代码:

int ii = 0;                     // index for printing every 50s
for (double t = 0; t < Tmax; t += dt) {
static int div = (int)(50/dt);      // print only every 50s
// create a new QuadTree
if(t==0) cerr << "Creating 1st QuadTree..." << endl;    // checking if this works the first time
//      QuadTreeNode tree;
QuadTreeNode* tree;
tree = new QuadTreeNode();  
// insert all of the masses into the tree
if(t==0) cerr << "Inserting Bodies into 1st QuadTree..." << endl;
for (int i = 0; i < bodies.size(); i++) {
if(t==0){
if(i%50 == 0){
cerr << "Inserting " << i << "th body..." << endl;
}
}
tree->insert(bodies[i]);
}
if(t==0) cerr << "1st Body insertion finished." << endl;
if(t==0) cerr << "Beginning RK4 Calculation..." << endl;
for(int j = 0; j < bodies.size(); j++){
Vector3D rtold, vtold, rt, vt;
if(ii%div == 0){
outfile << t+dt << " ";
}
// compute force on each body
//          vector<Vector3D> forces;    // declared globally for f_v
for (int i = 0; i < bodies.size(); i++) {
forces.push_back(tree->netforce_on(bodies[i]));
}
/* These lines update the position and velocity of jth body */
rtold = bodies[j].position;
vtold = bodies[j].velocity;
rt = rtold + VecFRK4(0,f_r,f_v,j,t,rtold,vtold,dt);
vt = vtold + VecFRK4(1,f_r,f_v,j,t,rtold,vtold,dt);
/* set the old values to the new updated values for next iteration */
bodies[j].position = rt;
bodies[j].velocity = vt;
if(ii%div == 0){
outfile << rt.Getx() << " " << rt.Gety() << " ";
}
}
if(ii%div == 0){
outfile << endl;
}
if(ii%(50) == 0){       // note every 1e4 seconds
cerr << "Calculating... t = " << t+dt << " ..." << endl;
}
ii++;
delete tree;
}

这使用执行 Runge-Kutta 计算的外部函数。这已经在其他程序中使用过,所以不用担心VecFRK4功能。

可以在此处找到运行此内容所需的完整代码集合。

我能够修复并完成这段代码。我将为任何可能在创建 QuadTree 时遇到类似问题的人发布我的解决方案。

问题出在QuadTree代码本身。在评论中,有人提到 is_internal() 方法将始终像这样返回 false,因为在 if 语句之前创建新的子节点正在创建质量为 0 的新子节点,因此永远不会满足 true 的条件。下一个问题是无条件地创建新的子节点。我们只想在 insert() 方法中第一次调用子节点时创建子节点,并且我们只想在子节点尚不存在时才创建它们(即我们不想覆盖已经存在的子节点)。为了解决这个问题,我们认识到子节点的首次使用是在 is_internal() 方法中。这取决于现有的子节点,因此我们必须在该方法中创建子节点:

bool is_internal(){
createSubnodes();
if (this->A->body.mass > 0) return true;
if (this->B->body.mass > 0) return true;
if (this->C->body.mass > 0) return true;
if (this->D->body.mass > 0) return true;
return false;   // this is an external node
}

现在,为了防止每次调用 createSubnodes() 时都覆盖新的子节点,我们只需在创建它们之前询问它们是否存在:

void createSubnodes(){
// 1st quadrant / subnode
if (!this->A) {    // create and initialize subnode if there's
// not an existing one already
this->A = new QuadTreeNode();
this->A->length = this->length/2.;
this->A->horiz_offset = this->horiz_offset + 0.25*this->length;
this->A->vert_offset = this->vert_offset + 0.25*this->length;
}
// repeat for B, C, and D subnodes
}

这将防止程序冻结,因为四叉树现在不会只是没有绑定。

下一个问题是这将导致内存泄漏。该程序将继续创建子四叉树并将它们保存在内存中。我们需要创建一个 delete 方法,通过从底部开始删除子节点来释放空间。为此,我们可以制作:

void free() {       // delete the quadtree after use
if (this->A) {                  // if this subnode exists,
this->A->free();            // delete it's subnodes (keeps checking)
delete this->A;             // until a NULL subnode is reached
}
// repeat for B, C, D
}

在主程序中,在每个时间步的末尾调用此方法。此外,在每个时间步长之后调用forces.clear()以删除不再需要的力并为新力腾出空间,从而防止再次内存泄漏。

我希望有一天有人觉得这有帮助!

相关内容

  • 没有找到相关文章

最新更新