我试图优化下面的代码,但我不知道如何提高计算速度。我试过python,但是性能和python一样。
是否有可能在不重写C/c++中的一切的情况下提高性能?
谢谢你的帮助
import numpy as np
heightSequence = 400
widthSequence = 400
nHeights = 80
DOF = np.zeros((heightSequence, widthSequence), dtype = np.float64)
contrast = np.float64(np.random.rand(heightSequence, widthSequence, nHeights))
initDOF = np.zeros([heightSequence, widthSequence], dtype = np.float64)
initContrast = np.zeros([heightSequence, widthSequence, nHeights], dtype = np.float64)
initHeight = np.float64(np.r_[0:nHeights:1.0])
initPixelContrast = np.array(([0 for ii in range(nHeights)]), dtype = np.float64)
# for each row
for row in range(heightSequence):
# for each col
for col in range(widthSequence):
# initialize variables
height = initHeight # array ndim = 1
c = initPixelContrast # array ndim = 1
# for each height
for indexHeight in range(0, nHeights):
# get contrast profile for current pixel
tempC = contrast[:, :, indexHeight]
c[indexHeight] = tempC[row, col]
# save original contrast
# originalC = c
# originalHeight = height
# remove profile before maximum and after minumum contrast
idxMaxContrast = np.argmax(c)
c = c[idxMaxContrast:]
height = height[idxMaxContrast:]
idxMinContrast = np.argmin(c) + 1
c = c[0:idxMinContrast]
height = height[0:idxMinContrast]
# remove some refraction
if (len(c) <= 1) | (np.max(c) <= 0):
DOF[row, col] = 0
else:
# linear fitting of profile contrast
P = np.polyfit(height, c, 1)
m = P[0]
q = P[1]
# remove some refraction
if m >= 0:
DOF[row, col] = 0
else:
DOF[row, col] = -q / m
print 'row=%i/%i' %(row, heightSequence)
# set range of DOF
DOF[DOF < 0] = 0
DOF[DOF > nHeights] = 0
通过查看代码,似乎可以完全摆脱两个外部循环,将代码转换为向量化形式。然而,np.polyfit
调用必须用其他表达式代替,但是线性拟合的系数很容易找到,也是矢量化的形式。最后一个if-else
可以变成np.where
呼叫