c-CUDA中的多个内核调用



我试图在CUDA上多次调用同一内核(使用一个不同的输入参数),但它只执行第一个内核,不执行其他内核调用。假设输入数组为new_value0=[123.814935276; 234; 100; 166; 203.0866414; 383; 186; 338; 173.0984233]new_value1=[186.221113; 391; 64; 235; 195.7454998; 275; 218; 121; 118.0333872]部分输出为:

entra
entra
entra
334 
549 
524 
alpha1.000000 
alpha1.000000 
alpha1.000000 
in 2 idx-j 0-0 Value 123.814934 - m=334 - k=0 
 mlx -1618.175171 
in 1 idx-j 0-1 Value 234.000000 - m=334 k=1 
 mlx -571.983032 
in 1 idx-j 0-2 Value 100.000000 - m=334 k=2 
 mlx -208.243652 
in 1 idx-j 1-0 Value 166.000000 - m=549 k=3 
 mlx 477.821777 
in 2 idx-j 1-1 Value 203.086639 - m=549 - k=4 
 mlx -2448.556396 
in 1 idx-j 1-2 Value 383.000000 - m=549 k=5 
 mlx -549.565674 
in 1 idx-j 2-0 Value 186.000000 - m=524 k=6 
 mlx 239.955444 
in 1 idx-j 2-1 Value 338.000000 - m=524 k=7 
 mlx 1873.975708 
in 2 idx-j 2-2 Value 173.098419 - m=524 - k=8 
 mlx -835.600220 
mlx =-835.600220 
bs = -835.600220 .
esci
esci
esci

它来自第一个内核调用。

这是内核:

__global__  void calculateMLpa( int N, float *bs, float *Value, float alphaxixj, float tauxi, const int sz, int dim, int *m){
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    printf("entran");
    if(idx<N){
        bs[idx]=0;
        int i,k=0;
        float mlx = 0;
        float v;
        float alphaxi;
        m[idx]=0;
        int state[9];
        int p, j, t;
        int cont=0;

        if(idx==0){
            m[idx]=Value[idx+1]+Value[idx+2];
        }
        else if(idx==1){
            m[idx]=Value[idx+2]+Value[idx+4];
        }else{
            m[idx]=Value[idx+4]+Value[idx+5];
        }
        printf("%d n",m[idx]);
        alphaxi = alphaxixj * (((float) sz) - 1.0);
        alphaxi = alphaxixj;
        printf("alpha%f n",alphaxi);
        if(idx==0){
            for(i=0;i<sz;i++){
                for (j = 0; j < sz; j++) {
                    // xi!=xj
                    if (i!=j){
                        if(j==0) {
                            k=i*3;
                        }
                        else if(j==1){
                            k=i*3+1;
                        }
                        else if(j==2) {
                            k=i*3+2;
                        }
                        mlx = mlx + lgamma(alphaxixj + Value[k]) - lgamma(alphaxixj);
                        printf("in 1 idx-j %d-%d Value %f - m=%d k=%d n",i,j,Value[k],m[i],k);
                        printf(" mlx %f n",mlx);
                        //k++;
                    }
                    // xi
                    else {
                        if(j==0) {
                            k=i*3;
                        }
                        else if(j==1){
                            k=i*3+1;
                        }
                        else if(j==2) {
                            k=i*3+2;
                        }
                        mlx = mlx + lgamma(alphaxi) - lgamma(alphaxi + m[i]);
                        mlx = mlx + lgamma(alphaxi + m[i] + 1.0)+ (alphaxi + 1.0) * log(tauxi);
                        mlx = mlx - lgamma(alphaxi + 1.0)- (alphaxi + m[i] + 1.0) * log(tauxi + Value[k]);
                        printf("in 2 idx-j %d-%d Value %f - m=%d - k=%d n",i,j,Value[k],m[i],k);
                        printf(" mlx %f n",mlx);
                        //k++;
                    }
                }
            }
            printf("mlx =%f n",mlx);
            bs[idx]=mlx;
            printf("bs = %f .n",bs[idx]);
        }
    }
    printf("escin");
}

这是代码:

int main (void){
    printf("START");
    FILE *pf;
    const int N=9;
    char fName[2083];
    char *parents[3]={"0","1","2"};
    char *traject[9]={"0-0","0-1","0-2","1-0","1-1","1-2","2-0","2-1","2-2"};
    size_t parents_len;
    size_t traject_len;
    parents_len=sizeof(char)/sizeof(parents[0]);
    traject_len=sizeof(char)/sizeof(traject[0]);
    //possibile malloc
    //pointer host to memory
    char **parents_dev;
    char **traject_dev;
    //allocate on device
    cudaMalloc((void **)&parents_dev,sizeof(char**)*parents_len);
    cudaMalloc((void **)&traject_dev,sizeof(char**)*traject_len);
    //host to Device
    cudaMemcpy(parents_dev,parents,sizeof(char**)*parents_len,cudaMemcpyHostToDevice);
    cudaMemcpy(traject_dev,traject,sizeof(char**)*traject_len,cudaMemcpyHostToDevice);
    //Loop start
    int file,Epoca;
    float *bs;
    float *bs_dev;
    int file_size0=28;
    int file_size1=55;
    int file_size3=109;
    //size_t size = N * sizeof(float);
    bs=(float *)malloc(N * sizeof(float));
    cudaMalloc((void **)&bs_dev, N * sizeof(float));

    float *new_value0,*new_value0_dev;
    new_value0=(float *)malloc(file_size0*N/3);
    cudaMalloc((void **)&new_value0_dev, N * file_size0/3);
    //
    float *new_value1,*new_value1_dev;
    new_value1=(float *)malloc(file_size0*N/3);
    cudaMalloc((void **)&new_value1_dev, N * file_size0/3);
    //
    float *new_value2,*new_value2_dev;
    new_value2=(float *)malloc(file_size0*N/3);
    cudaMalloc((void **)&new_value2_dev, N * file_size0/3);
    //
    //one parent 1,2
    float *new_value00,*new_value00_dev;
    new_value00=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value00_dev, N * file_size1/6);
    //
    float *new_value01,*new_value01_dev;
    new_value01=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value01_dev, N * file_size1/6);
    //
    float *new_value10,*new_value10_dev;
    new_value10=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value10_dev, N * file_size1/6);
    //
    float *new_value11,*new_value11_dev;
    new_value11=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value11_dev, N * file_size1/6);
    //
    float *new_value20,*new_value20_dev;
    new_value20=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value20_dev, N * file_size1/6);
    //
    float *new_value21,*new_value21_dev;
    new_value21=(float *)malloc(file_size1*N/6);
    cudaMalloc((void **)&new_value21_dev, N * file_size1/6);
    //
    //double parent
    float *new_value000,*new_value000_dev;
    new_value000=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value000_dev, N * file_size3/12);
    //
    float *new_value001,*new_value001_dev;
    new_value001=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value001_dev, N * file_size3/12);
    //
    float *new_value010,*new_value010_dev;
    new_value010=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value010_dev, N * file_size3/12);
    //
    float *new_value011,*new_value011_dev;
    new_value011=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value011_dev, N * file_size3/12);
    //
    float *new_value100,*new_value100_dev;
    new_value100=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value100_dev, N * file_size3/12);
    //
    float *new_value101,*new_value101_dev;
    new_value101=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value101_dev, N * file_size3/12);
    //
    float *new_value110,*new_value110_dev;
    new_value110=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value110_dev, N * file_size3/12);
    //
    float *new_value111,*new_value111_dev;
    new_value111=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value111_dev, N * file_size3/12);
    //
    float *new_value200,*new_value200_dev;
    new_value200=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value200_dev, N * file_size3/12);
    //
    float *new_value201,*new_value201_dev;
    new_value201=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value201_dev, N * file_size3/12);
    //
    float *new_value210,*new_value210_dev;
    new_value210=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value210_dev, N * file_size3/12);
    //
    float *new_value211,*new_value211_dev;
    new_value211=(float *)malloc(file_size3*N/12);
    cudaMalloc((void **)&new_value211_dev, N * file_size3/12);
    //int file;
    for(file=0;file<4;file++){
        int f, i, j, file_size=0, kk=0;
        //file IO
        sprintf(fName, "//home//user//prova%d.csv",file);
        pf=fopen(fName,"r");
        char *X;
        char *PaX;
        int Time;
        char *pa;
        char *xixj;
        float val;
        char buffer[BUFSIZ], *ptr;
        if (pf)
        {
            /*
             * Read each line from the file.
             */
            while(fgets(buffer, sizeof buffer, pf)){
                file_size++;
            }
            fclose(pf);
        }
        //variabile per kernel
        float *Value, *Value_dev;
        Value=(float *)malloc(file_size*N);
        cudaMalloc((void **)&Value_dev, N * file_size);
        //
        pf=fopen(fName,"r");
        if(pf)
        {
            printf("nnumero righe file %d = %dn",file,file_size);
            char *state[file_size];
            while(fgets(buffer, sizeof buffer, pf))
            {
                //printf("start csv n");
                char *token;
                char *ptr = buffer;
                const char end[2]=",";//fgets(buffer, sizeof buffer, pf);
                token = strtok(ptr, end);
                f=0;
                /* walk through other tokens */
                while( token != NULL )
                {
                    if(f==0){
                        X=token;
                        //  printf( "X %sn", token );
                    }else if(f==1){
                        PaX=token;
                        //  printf( "PaX %sn", token );
                    }
                    else if(f==2){
                        Time=strtod(token,NULL);
                        //  printf( "Time %f n", token );
                    }
                    else if(f==3){
                        pa=token;
                        //  printf( "pa %s n", token );
                    }
                    else if(f==4){
                        xixj=(token);
                        //  printf( "xixj %s n", token );
                    }
                    else{
                        Value[kk]=strtod(&token[1], NULL);
                        //          printf("Value %f n", Value[kk]);
                        kk++;
                    }
                    token = strtok(NULL, end);
                    f++;
                }
            }
            //
            //insert in variable
            if (file==0){
                for (i=0;i<(file_size0-1)/3;++i){
                    new_value0[i]=Value[i+1];
                    cudaMemcpy(new_value0_dev,new_value0,N*sizeof(file_size0), cudaMemcpyHostToDevice);
                    new_value1[i]=Value[i + 1+((file_size0-1)/3)];
                    cudaMemcpy(new_value1_dev,new_value1,N*sizeof(file_size0), cudaMemcpyHostToDevice);
                    new_value2[i]=Value[i + (1+ 2*(file_size0-1)/3)];
                    cudaMemcpy(new_value2_dev,new_value2,N*sizeof(file_size0), cudaMemcpyHostToDevice);
                    //  printf(" new_value- %d - %f - %f - %f n",i,new_value0[i],new_value1[i],new_value2[i]);

                }
            }else if(file==1 || file==2){
                for (i=0; i<(file_size1-1)/6;++i)
                {
                    new_value00[i]=Value[i+1];
                    cudaMemcpy(new_value00_dev,new_value00,N*sizeof(file_size0), cudaMemcpyHostToDevice);
                    new_value01[i]=Value[i+ ((file_size0-1)/3)+1];
                    cudaMemcpy(new_value01_dev,new_value01,N*sizeof(file_size1), cudaMemcpyHostToDevice);
                    new_value10[i]=Value[i+ (2*(file_size1-1)/6)+1];
                    cudaMemcpy(new_value10_dev,new_value10,N*sizeof(file_size1), cudaMemcpyHostToDevice);
                    new_value11[i]=Value[i+ (3*(file_size1-1)/6)+1];
                    cudaMemcpy(new_value11_dev,new_value11,N*sizeof(file_size1), cudaMemcpyHostToDevice);
                    new_value20[i]=Value[i+ (4*(file_size1-1)/6)+1];
                    cudaMemcpy(new_value20_dev,new_value20,N*sizeof(file_size1), cudaMemcpyHostToDevice);
                    new_value21[i]=Value[i+ (5*(file_size1-1)/6)+1];
                    cudaMemcpy(new_value21_dev,new_value21,N*sizeof(file_size1), cudaMemcpyHostToDevice);
                    //      printf(" new_value- %d - %f - %f - %f - %f - %f - %f n",i,new_value00[i],new_value01[i],new_value10[i],new_value11[i],new_value20[i],new_value21[i]);
                }
            }else{
                for (i=0; i<(file_size3-1)/12;++i)
                {
                    new_value000[i]=Value[i+1];
                    cudaMemcpy(new_value000_dev,new_value000,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value001[i]=Value[i+ ((file_size3-1)/12)+1];
                    cudaMemcpy(new_value001_dev,new_value001,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value010[i]=Value[i+ (2*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value010_dev,new_value010,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value011[i]=Value[i+ (3*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value011_dev,new_value011,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value100[i]=Value[i+ (4*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value100_dev,new_value100,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value101[i]=Value[i+ (5*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value101_dev,new_value101,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value110[i]=Value[i+ (6*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value110_dev,new_value110,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value111[i]=Value[i+ (7*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value111_dev,new_value111,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value200[i]=Value[i+ (8*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value200_dev,new_value200,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value201[i]=Value[i+ (9*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value201_dev,new_value201,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value210[i]=Value[i+ (10*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value210_dev,new_value210,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    new_value211[i]=Value[i+ (11*(file_size3-1)/12)+1];
                    cudaMemcpy(new_value211_dev,new_value211,N*sizeof(file_size3), cudaMemcpyHostToDevice);
                    //  printf(" new_value- %d - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f n",i,new_value000[i],new_value001[i],new_value010[i],new_value011[i],new_value100[i],new_value101[i],new_value110[i],new_value111[i],new_value200[i],new_value201[i],new_value210[i],new_value211[i]);
                }
            }
        }
    }
    //cudaMemcpy(Value_dev,Value,N*sizeof(file_size), cudaMemcpyHostToDevice);
    //variable of kernel
    //no parent

    //START computation
    printf("nPRE KERNELn");
    const int sz=(sizeof(parents)/sizeof(*(parents)));
    const int dim=(sizeof(traject)/sizeof(*(traject)));
    printf("%d - %d n",sz, dim);
    //chiamata kernel
    int block_size = 3;
    int n_blocks =1 ;
    int *m, *m_dev;
    m=(int *)malloc(sz*N);
    cudaMalloc((void **)&m_dev, N * sz);
    float *trns_dev;
    cudaMalloc((void **)&trns_dev, N * dim);
    int i;
    for(i=0;i<(file_size0-1)/3;i++){
        printf(" new_value- %d - %f - %f - %f n",i,new_value0[i],new_value1[i],new_value2[i]);
    }
    printf("n");
    for(i=0;i<(file_size1-1)/6;i++){
        printf(" new_value- %d - %f - %f - %f - %f - %f - %f n",i,new_value00[i],new_value01[i],new_value10[i],new_value11[i],new_value20[i],new_value21[i]);
    }
    printf("n");
    for(i=0;i<(file_size3-1)/12;i++){
        printf(" new_value- %d - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f - %f n",i,new_value000[i],new_value001[i],new_value010[i],new_value011[i],new_value100[i],new_value101[i],new_value110[i],new_value111[i],new_value200[i],new_value201[i],new_value210[i],new_value211[i]);
    }
    for(Epoca=0; Epoca<3; Epoca++){
        bs=0;
        float bf=0;
        cudaMalloc((void **)&bf, N * sz);
        cudaMemcpy(bs_dev,bs,N*sizeof(float), cudaMemcpyHostToDevice);
        if(Epoca==0){
            calculateMLpa<<<n_blocks, block_size >>>(N,bs_dev,new_value0_dev,1.0,0.1,sz,dim,m_dev);
            cudaDeviceSynchronize();
            cudaMemcpy(bs,bs_dev,N*sizeof(float), cudaMemcpyDeviceToHost);
            cudaMemcpy(m,m_dev,N*sizeof(float), cudaMemcpyDeviceToHost);
            bf =+ bs[0];
            printf("score= %f m0 = %d, m1 = %d, m2 = %d nn", bf, m[0], m[1], m[2]);
            calculateMLpa<<<n_blocks, block_size >>>(N,bs_dev,new_value00_dev,1.0,0.1,sz,dim,m_dev);
            cudaDeviceSynchronize();
            cudaMemcpy(bs,bs_dev,N*sizeof(float), cudaMemcpyDeviceToHost);
            cudaMemcpy(m,m_dev,N*sizeof(float), cudaMemcpyDeviceToHost);
            bf =+ bs[0];
            printf("score= %f n", bf);

        }
        printf("score %d= %f n",Epoca, bf);
    }
    free(bs_dev);
}

我认为我可以将其与流并行化,但我以前从未使用过它。我一开始就看这个。

听起来应该使用并行CUDA流。

一个有趣的选择:

CUDA7引入了一个新选项,即每线程默认流有两种效果。首先,它为每个主机线程提供了自己的默认值流动这意味着由不同的主机线程可以同时运行。

同样值得注意的是:

如CUDA C编程指南所述,异步命令在设备具有完成了请求的任务(它们是非阻塞的)。这些命令是:

内核启动;内存在两个地址之间复制到同一个地址设备存储器;的内存块从主机到设备的内存拷贝64KB或更低;使用Async的函数执行的内存复制后缀内存设置函数调用。

相关内容

  • 没有找到相关文章

最新更新