从CPDT中获取代码,我想证明易流ones
的一个属性,它总是返回1
。
CoFixpoint ones : Stream Z := Cons 1 ones.
同样在CPDT中,我使用此函数从流中检索列表:
Fixpoint approx A (s:Stream A) (n:nat) : list A :=
match n with
| O => nil
| S p => match s with
| Cons h t => h :: approx A t p
end
end.
要获得五个1
的列表,例如:
Eval compute in approx Z ones 5.
= 1 :: 1 :: 1 :: 1 :: 1 :: nil
: list Z
我如何证明,对于给定给approx
的所有n
,列表将只包含1
?我甚至不知道该如何表述。我应该为列表使用类似nth n list
的帮助函数吗?该函数从list
返回元素编号n
?而
forall (n length : nat), nth n1 (approx Z ones length) = 1
(或者可以使用Zeq
而不是=
。)
我的方向对吗?
我认为拥有比点式nth
列表视图更通用的视图将更容易处理。以下是我的做法(证明是0自动化,以确保你看到一切):
Inductive all_ones : list Z -> Prop :=
| nil_is_ones : all_ones nil (* nil is only made of ones *)
(* if l is only made of ones, 1 :: l is too *)
| cons_is_ones : forall l, all_ones l -> all_ones (cons 1%Z l)
(* and these are the only option to build a list only made of ones
.
CoFixpoint ones : Stream Z := Cons 1%Z ones.
Fixpoint approx A (s:Stream A) (n:nat) : list A :=
match n with
| O => nil
| S p => match s with
| Cons h t => h :: approx A t p
end
end.
Lemma approx_to_ones : forall n, all_ones (approx _ ones n).
Proof.
induction n as [ | n hi]; simpl in *.
- now constructor.
- constructor.
now apply hi.
Qed.
如果你更喜欢all_ones
的功能性定义,这里有一些等效的定义:
Fixpoint fix_all_ones (l: list Z) : Prop := match l with
| nil => True
| 1%Z :: tl => fix_all_ones tl
| _ => False
end.
Fixpoint fix_bool_all_ones (l: list Z) : bool := match l with
| nil => true
| 1%Z :: tl => fix_bool_all_ones tl
| _ => false
end.
Lemma equiv1 : forall l, all_ones l <-> fix_all_ones l.
Proof.
induction l as [ | hd tl hi]; split; intros h; simpl in *.
- now idtac.
- now constructor.
- destruct hd; simpl in *.
+ now inversion h; subst; clear h.
+ inversion h; subst; clear h.
now apply hi.
+ now inversion h; subst; clear h.
- destruct hd; simpl in *.
+ now case h.
+ destruct p; simpl in *.
* now case h.
* now case h.
* constructor; now apply hi.
+ now case h.
Qed.
Lemma equiv2 : forall l, fix_all_ones l <-> fix_bool_all_ones l = true.
Proof.
induction l as [ | hd tl hi]; split; intros h; simpl in *.
- reflexivity.
- now idtac.
- destruct hd; simpl in *.
+ now case h.
+ destruct p; simpl in *.
* now case h.
* now case h.
* now apply hi.
+ now case h.
- destruct hd; simpl in *.
+ discriminate h.
+ destruct p; simpl in *.
* now case h.
* now case h.
* now apply hi.
+ discriminate h.
Qed.
最佳,
V