GridSearchCV的并行错误,与其他方法相当



我正在使用GridSearchCV遇到以下问题:在使用n_jobs > 1时,它会给我一个并行错误。同时,n_jobs > 1与RadonmForestClassifier等单个型号的工作正常。

下面是一个简单的工作示例,显示错误:

train = np.random.rand(100,10)
targ = np.random.randint(0,2,100)
clf = ensemble.RandomForestClassifier(n_jobs = 2)
clf.fit(train,targ)
train = np.random.rand(100,10)
targ = np.random.randint(0,2,100)
​
clf = ensemble.RandomForestClassifier(n_jobs = 2)
clf.fit(train,targ)
Out[349]: RandomForestClassifier(bootstrap=True, class_weight=None,     criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_split=1e-07, min_samples_leaf=1,
            min_samples_split=2, min_weight_fraction_leaf=0.0,
            n_estimators=10, n_jobs=2, oob_score=False, random_state=None,
            verbose=0, warm_start=False)

此示例工作正常。

同时,以下内容不起作用:

clf = ensemble.RandomForestClassifier()
param_grid = {'n_estimators': [10,20]}
grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
grid_s.fit(train, targ)

并给出以下错误:

Fitting 3 folds for each of 2 candidates, totalling 6 fits
ImportErrorTraceback (most recent call last)
<ipython-input-351-b8bb45396026> in <module>()
      2 param_grid = {'n_estimators': [10,20]}
      3 grid_s= model_selection.GridSearchCV(clf, param_grid=param_grid_gb,n_jobs=-1,verbose=1)
----> 4 grid_s.fit(train, targ)
/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in fit(self, X, y, groups)
    943             train/test set.
    944         """
--> 945         return self._fit(X, y, groups, ParameterGrid(self.param_grid))
    946 
    947 
/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in _fit(self, X, y, groups, parameter_iterable)
    562                                   return_times=True, return_parameters=True,
    563                                   error_score=self.error_score)
--> 564           for parameters in parameter_iterable
    565           for train, test in cv_iter)
    566 
/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
    726         self._aborting = False
    727         if not self._managed_backend:
--> 728             n_jobs = self._initialize_backend()
    729         else:
    730             n_jobs = self._effective_n_jobs()
/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _initialize_backend(self)
    538         try:
    539             return self._backend.configure(n_jobs=self.n_jobs, parallel=self,
--> 540                                            **self._backend_args)
    541         except FallbackToBackend as e:
    542             # Recursively initialize the backend in case of requested fallback.
/root/anaconda3/envs/python2/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in configure(self, n_jobs, parallel, **backend_args)
    297         if already_forked:
    298             raise ImportError(
--> 299                 '[joblib] Attempting to do parallel computing '
    300                 'without protecting your import on a system that does '
    301                 'not support forking. To use parallel-computing in a '
ImportError: [joblib] Attempting to do parallel computing without protecting your import on a system that does not support forking. To use parallel-computing in a script, you must protect your main loop using "if __name__ == '__main__'". Please see the joblib documentation on Parallel for more information

我认为您正在使用Windows。您需要将网格搜索包装在功能中,然后在__name__ == '__main__'中调用。Joblib并行n_jobs=-1确定要使用的作业数,这些作业始终在Windows上不起作用。

尝试在功能中包装网格搜索:

def somefunction():
    clf = ensemble.RandomForestClassifier()
    param_grid = {'n_estimators': [10,20]}
    grid_s= model_selection.GridSearchCV(clf,   param_grid=param_grid_gb,n_jobs=-1,verbose=1)
    grid_s.fit(train, targ)
    return grid_s
if __name__ == '__main__':
    somefunction()

或:

if __name__ == '__main__':
    clf = ensemble.RandomForestClassifier()
    param_grid = {'n_estimators': [10,20]}
    grid_s= model_selection.GridSearchCV(clf,   param_grid=param_grid_gb,n_jobs=-1,verbose=1)
    grid_s.fit(train, targ)

也许这可能仍然与某些相关!

我仅尝试使用Windows 10 Machine上的Anaconda :

我在环境中遇到了相同的问题,其中包括以下代码部分:

parameters = [{'C': [1, 10, 100, 1000], 'kernel': ['linear']}, {'C': [1, 10, 100, 1000], 'kernel': ['rbf'], 'gamma': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]}]
grid_search = GridSearchCV(estimator = classifier, param_grid = parameters, scoring = 'accuracy', cv = 10, n_jobs = -1)
grid_search = grid_search.fit(X_train, y_train)
best_accuracy = grid_search.best_score_
best_parameters = grid_search.best_params_

我在互联网上找不到很多东西,所以我想也许我应该更新Joblib类。和惊喜 - 未安装在我的特定环境中中。安装并更新后 - 它运行得很好。使用n_jobs = -1n_jobs = 2

对我有用的是更改平行后端:

from sklearn.utils import parallel_backend
with parallel_backend('multiprocessing'):  # 'multiprocessing' / 'threading'
    # GridSearchCV code...

请参阅此处可接受的backend值。

从这里获取的答案。

相关内容

  • 没有找到相关文章

最新更新