我正在尝试使用 PySpark 从列中提取正则表达式模式。我有一个包含正则表达式模式的数据框,然后是一个包含我想匹配的字符串的表。
columns = ['id', 'text']
vals = [
(1, 'here is a Match1'),
(2, 'Do not match'),
(3, 'Match2 is another example'),
(4, 'Do not match'),
(5, 'here is a Match1')
]
df_to_extract = sql.createDataFrame(vals, columns)
columns = ['id', 'Regex', 'Replacement']
vals = [
(1, 'Match1', 'Found1'),
(2, 'Match2', 'Found2'),
]
df_regex = sql.createDataFrame(vals, columns)
我想在"df_to_extract"的"文本"列中匹配"正则表达式"列。我想提取针对每个 id 的术语,结果表包含 id 和对应于"正则表达式"的"替换"。例如:
+---+------------+
| id| replacement|
+---+------------+
| 1| Found1|
| 3| Found2|
| 5| Found1|
+---+------------+
谢谢!
一种方法是使用 pyspark.sql.functions.expr
,它允许您在连接条件中使用列值作为参数。
例如:
from pyspark.sql.functions import expr
df_to_extract.alias("e")
.join(
df_regex.alias("r"),
on=expr(r"e.text LIKE concat('%', r.Regex, '%')"),
how="inner"
)
.select("e.id", "r.Replacement")
.show()
#+---+-----------+
#| id|Replacement|
#+---+-----------+
#| 1| Found1|
#| 3| Found2|
#| 5| Found1|
#+---+-----------+
这里我使用了 sql 表达式:
e.text LIKE concat('%', r.Regex, '%')
它将连接text
列类似于Regex
列的所有行,%
充当通配符以捕获之前和之后的任何内容。