我正在运行多处理以缩短多个时期的优化时间。
在我使用循环之前,当我的数据不大时,这很快。
for date in DatesOpt:
x = X.loc[X['Date'] == np.int(date)].drop('Date',1)
f = F.loc[F['Date'] == np.int(date)].drop('Date',1)
d = D.loc[D['Date'] == np.int(date)].drop('Date',1)
r = R.loc[R['Date'] == np.int(date)].drop('Date',1)
optimize(date,x,f,d,r)
优化函数将优化结果输出到CSV文件。
但是,当我将其更改为
时if __name__=='__main__':
pool = mp.Pool(mp.cpu_count()-1)
for date in DatesOpt:
x = X.loc[X['Date'] == np.int(date)].drop('Date',1)
f = F.loc[F['Date'] == np.int(date)].drop('Date',1)
d = D.loc[D['Date'] == np.int(date)].drop('Date',1)
r = R.loc[R['Date'] == np.int(date)].drop('Date',1)
pool.apply_async(optimize,args=(date,x,f,d,r,))
print('Waiting for all subprocesses done')
pool.close()
print('Pool Closed')
pool.join()
print('All subprocess done.')
一切都停在"池封闭"输出处,优化器永无止境。
此代码有任何问题吗?
您要在等待之前关闭池,最好反转:
if __name__=='__main__':
pool = mp.Pool(mp.cpu_count()-1)
for date in DatesOpt:
x = X.loc[X['Date'] == np.int(date)].drop('Date',1)
f = F.loc[F['Date'] == np.int(date)].drop('Date',1)
d = D.loc[D['Date'] == np.int(date)].drop('Date',1)
r = R.loc[R['Date'] == np.int(date)].drop('Date',1)
pool.apply_async(optimize,args=(date,x,f,d,r,))
print('Waiting for all subprocesses done')
pool.join()
pool.close()
print('Pool Closed')
print('All subprocess done.')