我正在尝试从https://ci.apache.org/projects/flink/flink/flink/flink/flink-docs-rease-1.2.2./quickstart/run_example_quickstart.html
教程中的代码为
import org.apache.flink.api.common.functions.FoldFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditEvent;
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource;
public class WikipediaAnalysis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<WikipediaEditEvent> edits = see.addSource(new WikipediaEditsSource());
KeyedStream<WikipediaEditEvent, String> keyedEdits = edits
.keyBy(new KeySelector<WikipediaEditEvent, String>() {
@Override
public String getKey(WikipediaEditEvent event) {
return event.getUser();
}
});
DataStream<Tuple2<String, Long>> result = keyedEdits
.timeWindow(Time.seconds(5))
.fold(new Tuple2<>("", 0L), new FoldFunction<WikipediaEditEvent, Tuple2<String, Long>>() {
@Override
public Tuple2<String, Long> fold(Tuple2<String, Long> acc, WikipediaEditEvent event) {
acc.f0 = event.getUser();
acc.f1 += event.getByteDiff();
return acc;
}
});
result.print();
see.execute();
}
}
以下是我在Scala中的尝试
import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment}
import org.apache.flink.streaming.connectors.wikiedits.{WikipediaEditEvent, WikipediaEditsSource}
import org.apache.flink.streaming.api.windowing.time.Time
object WikipediaAnalytics extends App{
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val edits = env.addSource(new WikipediaEditsSource());
val keyedEdits = edits.keyBy(event => event.getUser)
val result = keyedEdits.timeWindow(Time.seconds(5)).fold(("", 0L), (we: WikipediaEditEvent, t: (String, Long)) =>
(we.getUser, t._2 + we.getByteDiff))
}
或多或少是向单词转换为Scala的单词,基于val result
的类型应为DataStream[(String, Long)]
,但是fold()
之后推断出的实际类型是没有关闭的。
请帮助确定Scala Code
有什么问题 edit1 :使用fold[R]
的咖喱示意图进行了以下更改
val result_1: (((String, Long), WikipediaEditEvent) => (String, Long)) => DataStream[(String, Long)] =
keyedEdits.timeWindow(Time.seconds(5)).fold(("", 0L))
val result_2: DataStream[(String, Long)] = result_1((t: (String, Long), we: WikipediaEditEvent ) =>
(we.getUser, t._2 + we.getByteDiff))
问题似乎与折叠有关,在累加器初始值之后,您必须具有关闭括号。解决此问题时,代码将无法编译,因为它没有可用于WikipediaediteVent的类型信息。解决的最简单方法是导入更多的Flink Scala API。请参阅下面的完整示例:
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.wikiedits.WikipediaEditsSource
import org.apache.flink.streaming.api.windowing.time.Time
object WikipediaAnalytics extends App {
val see: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
val edits = see.addSource(new WikipediaEditsSource())
val userEditsVolume: DataStream[(String, Int)] = edits
.keyBy(_.getUser)
.timeWindow(Time.seconds(5))
.fold(("", 0))((acc, event) => (event.getUser, acc._2 + event.getByteDiff))
userEditsVolume.print()
see.execute("Wikipedia User Edit Volume")
}