我正在尝试使用分类变量与GradientBoostingClassifier训练模型。
下面是一个原始代码示例,只是为了尝试将分类变量输入GradientBoostingClassifier
。
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier
import pandas
iris = datasets.load_iris()
# Use only data for 2 classes.
X = iris.data[(iris.target==0) | (iris.target==1)]
Y = iris.target[(iris.target==0) | (iris.target==1)]
# Class 0 has indices 0-49. Class 1 has indices 50-99.
# Divide data into 80% training, 20% testing.
train_indices = list(range(40)) + list(range(50,90))
test_indices = list(range(40,50)) + list(range(90,100))
X_train = X[train_indices]
X_test = X[test_indices]
y_train = Y[train_indices]
y_test = Y[test_indices]
X_train = pandas.DataFrame(X_train)
# Insert fake categorical variable.
# Just for testing in GradientBoostingClassifier.
X_train[0] = ['a']*40 + ['b']*40
# Model.
clf = GradientBoostingClassifier(learning_rate=0.01,max_depth=8,n_estimators=50).fit(X_train, y_train)
出现以下错误:
ValueError: could not convert string to float: 'b'
据我所知,在GradientBoostingClassifier
建立模型之前,似乎需要对分类变量进行一次热编码。
GradientBoostingClassifier
可以使用分类变量构建模型,而不必做一个热编码?
rgbm包能够处理上述样本数据。我正在寻找一个具有同等功能的Python库。
熊猫。Get_dummies或statmodels .tools.tools.categorical可用于将分类变量转换为虚拟矩阵。然后我们可以将虚拟矩阵合并回训练数据。
下面是问题的示例代码,执行了上述过程。
from sklearn import datasets
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import roc_curve,auc
from statsmodels.tools import categorical
import numpy as np
iris = datasets.load_iris()
# Use only data for 2 classes.
X = iris.data[(iris.target==0) | (iris.target==1)]
Y = iris.target[(iris.target==0) | (iris.target==1)]
# Class 0 has indices 0-49. Class 1 has indices 50-99.
# Divide data into 80% training, 20% testing.
train_indices = list(range(40)) + list(range(50,90))
test_indices = list(range(40,50)) + list(range(90,100))
X_train = X[train_indices]
X_test = X[test_indices]
y_train = Y[train_indices]
y_test = Y[test_indices]
###########################################################################
###### Convert categorical variable to matrix and merge back with training
###### data.
# Fake categorical variable.
catVar = np.array(['a']*40 + ['b']*40)
catVar = categorical(catVar, drop=True)
X_train = np.concatenate((X_train, catVar), axis = 1)
catVar = np.array(['a']*10 + ['b']*10)
catVar = categorical(catVar, drop=True)
X_test = np.concatenate((X_test, catVar), axis = 1)
###########################################################################
# Model and test.
clf = GradientBoostingClassifier(learning_rate=0.01,max_depth=8,n_estimators=50).fit(X_train, y_train)
prob = clf.predict_proba(X_test)[:,1] # Only look at P(y==1).
fpr, tpr, thresholds = roc_curve(y_test, prob)
roc_auc_prob = auc(fpr, tpr)
print(prob)
print(y_test)
print(roc_auc_prob)
感谢Andreas Muller指示熊猫Dataframe不应该用于scikit-learn估计器
当然它可以处理它,您只需要将分类变量编码为管道上的单独步骤。Sklearn完全能够处理分类变量以及R或任何其他ML包。R包仍然(大概)在后台进行one-hot编码,在这种情况下,它只是没有将编码和拟合的关注点分开(它应该这样做)。