我想在 sklearn.preprocessing
中使用MinMaxScaler
规范化训练和测试数据集。但是,该包似乎不接受我的测试数据集。
import pandas as pd
import numpy as np
# Read in data.
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',
header=None)
df_wine.columns = ['Class label', 'Alcohol', 'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium', 'Total phenols',
'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins',
'Color intensity', 'Hue', 'OD280/OD315 of diluted wines',
'Proline']
# Split into train/test data.
from sklearn.model_selection import train_test_split
X = df_wine.iloc[:, 1:].values
y = df_wine.iloc[:, 0].values
X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.3,
random_state = 0)
# Normalize features using min-max scaling.
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
执行此操作时,我得到一个DeprecationWarning: Passing 1d arrays as data is deprecated in 0.17 and will raise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample.
和一个ValueError: operands could not be broadcast together with shapes (124,) (13,) (124,)
.
重塑数据仍会产生错误。
X_test_norm = mms.transform(X_test.reshape(-1, 1))
这种整形会产生误差ValueError: non-broadcastable output operand with shape (124,1) doesn't match the broadcast shape (124,13)
。
有关如何修复此错误的任何输入都会有所帮助。
训练/测试数据的分区必须按照与train_test_split()
函数的输入数组相同的顺序指定,以便按照该顺序解压缩它们。
显然,当顺序被指定为X_train, y_train, X_test, y_test
时,y_train
(len(y_train)=54
)和X_test
(len(X_test)=124
)的形状被交换,导致ValueError
。
相反,您必须:
# Split into train/test data.
# _________________________________
# | |
# | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# | | /
# |__________|_____________________________________/
# (or)
# y_train, y_test, X_train, X_test = train_test_split(y, X, test_size=0.3, random_state=0)
# Normalize features using min-max scaling.
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X_train_norm = mms.fit_transform(X_train)
X_test_norm = mms.transform(X_test)
生产:
X_train_norm[0]
array([ 0.72043011, 0.20378151, 0.53763441, 0.30927835, 0.33695652,
0.54316547, 0.73700306, 0.25 , 0.40189873, 0.24068768,
0.48717949, 1. , 0.5854251 ])
X_test_norm[0]
array([ 0.72849462, 0.16386555, 0.47849462, 0.29896907, 0.52173913,
0.53956835, 0.74311927, 0.13461538, 0.37974684, 0.4364852 ,
0.32478632, 0.70695971, 0.60566802])