Spark:创建DataFrame给出异常



我正在尝试使用spark sqlContext创建DataFrame。我用过spark 1.6.3和scala 2.10.5。下面是我创建dataframe的代码。

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.sql.SQLContext
import com.knoldus.pipeline.KMeansPipeLine
object SimpleApp{
    def main(args:Array[String]){
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    val kMeans = new KMeansPipeLine()
     val df = sqlContext.createDataFrame(Seq(
        ("a@email.com", 12000,"M"),
        ("b@email.com", 43000,"M"),
        ("c@email.com", 5000,"F"),
        ("d@email.com", 60000,"M")
      )).toDF("email", "income","gender")
    val categoricalFeatures = List("gender","email")
    val numberOfClusters = 2
    val iterations = 10
    val predictionResult = kMeans.predict(sqlContext,df,categoricalFeatures,numberOfClusters,iterations)
   }
}

它给了我下面的异常。我犯了什么错误?有人能帮我解决这个问题吗?

 Exception in thread "main" java.lang.NoSuchMethodError:
    org.apache.spark.sql.SQLContext.createDataFrame(Lscala/collection/Seq;Lscala/ref lect/api/TypeTags$TypeTag;)Lorg/apache/spark/sql/Dataset;
    at SimpleApp$.main(SimpleApp.scala:24)
    at SimpleApp.main(SimpleApp.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:606)
    at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
    at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
    at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
    at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
    at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)

我使用的依赖项是:

scalaVersion := "2.10.5" 
libraryDependencies ++= Seq( 
 "org.apache.spark" % "spark-core_2.10" % "2.0.0" % "provided", 
 "org.apache.spark" % "spark-sql_2.10" % "2.0.0" % "provided", 
 "org.apache.spark" % "spark-mllib_2.10" % "2.0.0" % "provided", 
 "knoldus" % "k-means-pipeline" % "0.0.1" )

正如我在你的createDataFrame错过了第二个参数。这里描述的方法模式:https://spark.apache.org/docs/1.6.1/api/scala/index.html org.apache.spark.sql.SQLContext@createDataFrame (org.apache.spark.api.java.JavaRDD % 20 . lang . class)

在你的例子中,它将是

def createDataFrame[A <: Product](data: Seq[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame

:: Experimental::从Product的本地Seq中创建一个DataFrame。

或将Seq转换为List/RDD并使用带有2个参数的方法模式

相关内容

  • 没有找到相关文章

最新更新