。
我想在keras中的残留块之间添加跳过连接。这是我目前的实现,因为张量具有不同的形状。
函数看起来像这样:
def build_res_blocks(net, x_in, num_res_blocks, res_block, num_filters, res_block_expansion, kernel_size, scaling):
net_next_in = net
for i in range(num_res_blocks):
net = res_block(net_next_in, num_filters, res_block_expansion, kernel_size, scaling)
# net tensor shape: (None, None, 32)
# x_in tensor shape: (None, None, 3)
# Error here, net_next_in should be in the shape of (None, None, 32) to be fed into next layer
net_next_in = Add()([net, x_in])
return net
但我得到
ValueError: Operands could not be broadcast together with shapes (None, None, 32) (None, None, 3)
如何将这些张量添加或合并到正确的形状中(无,无,32)?如果这不是正确的方法,您如何才能达到预期的结果?
这就是res_block
的样子:
def res_block(x_in, num_filters, expansion, kernel_size, scaling):
x = Conv2D(num_filters * expansion, kernel_size, padding='same')(x_in)
x = Activation('relu')(x)
x = Conv2D(num_filters, kernel_size, padding='same')(x)
x = Add()([x_in, x])
return x
您不能添加不同形状的张量。您可以将它们与keras.layers.concatenate相连,但这会让您张开形状[None, None, 35]
。
另外,请看一下RESNET50在Keras实施。它们的残留块在快捷方式中具有1x1xc卷积,对于要添加尺寸的情况不同。