将火花数据框架转换为org.apache.spark.rdd.rdd [org.apache.spark.mllib.l



我是Scala和Spark 2.1的新手。我正在尝试计算看起来像这样的数据框中的许多元素之间的相关性:

item_1 | item_2 | item_3 | item_4
     1 |      1 |      4 |      3
     2 |      0 |      2 |      0
     0 |      2 |      0 |      1

这是我尝试的:

val df = sqlContext.createDataFrame(
  Seq((1, 1, 4, 3),
      (2, 0, 2, 0),
      (0, 2, 0, 1)
).toDF("item_1", "item_2", "item_3", "item_4")

val items = df.select(array(df.columns.map(col(_)): _*)).rdd.map(_.getSeq[Double](0))

和元素之间的Colcualte相关性:

val correlMatrix: Matrix = Statistics.corr(items, "pearson")

带有引擎错误消息:

<console>:89: error: type mismatch;
found   : org.apache.spark.rdd.RDD[Seq[Double]]
 required: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector]
       val correlMatrix: Matrix = Statistics.corr(items, "pearson")

我不知道如何从数据框架创建org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector]

这可能是一项非常容易的任务,但我有点挣扎,我很高兴为任何建议。

您可以例如使用VectorAssembler。组装向量并转换为RDD

import org.apache.spark.ml.feature.VectorAssembler
val rows = new VectorAssembler().setInputCols(df.columns).setOutputCol("vs")
  .transform(df)
  .select("vs")
  .rdd

Row提取Vectors

  • spark 1.x:

    rows.map(_.getAs[org.apache.spark.mllib.linalg.Vector](0))
    
  • spark 2.x:

    rows
      .map(_.getAs[org.apache.spark.ml.linalg.Vector](0))
      .map(org.apache.spark.mllib.linalg.Vectors.fromML)
    

关于您的代码:

  • 您有Integer列而不是Double
  • 数据不是array,因此您不能使用_.getSeq[Double](0)

如果您的目标是执行Pearson相关性,则不必使用RDD和向量。这是直接在DataFrame列上执行Pearson相关性的示例(有关列是双打类型)。

代码:

import org.apache.spark.sql.{SQLContext, Row, DataFrame}
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType, DoubleType}
import org.apache.spark.sql.functions._

val rb = spark.read.option("delimiter","|").option("header","false").option("inferSchema","true").format("csv").load("rb.csv").toDF("name","beerId","brewerId","abv","style","appearance","aroma","palate","taste","overall","time","reviewer").cache()
rb.agg(
    corr("overall","taste"),
    corr("overall","aroma"),
    corr("overall","palate"),
    corr("overall","appearance"),
    corr("overall","abv")
    ).show()

在此示例中,我正在导入一个数据框(使用自定义定界符,无标题和推断数据类型),然后简单地针对其中具有多个相关性的数据框执行AGG函数。



输出:

+--------------------+--------------------+---------------------+-------------------------+------------------+
|corr(overall, taste)|corr(overall, aroma)|corr(overall, palate)|corr(overall, appearance)|corr(overall, abv)|
+--------------------+--------------------+---------------------+-------------------------+------------------+
|  0.8762432795943761|   0.789023067942876|   0.7008942639550395|       0.5663593891357243|0.3539158620897098|
+--------------------+--------------------+---------------------+-------------------------+------------------+

从结果中可以看到,(总体,味觉)列高度相关,而(总体,ABV)并不多。

这是指向具有汇总相关函数的Scala Docs数据框页面的链接。

相关内容

  • 没有找到相关文章

最新更新