指定 seq2seq 自动编码器.RepeatVector是做什么的?批量学习对预测输出有什么影响?



我正在构建一个基本的seq2seq自动编码器,但我不确定我是否正确。

model = Sequential()
# Encoder       
model.add(LSTM(32, activation='relu', input_shape =(timesteps, n_features ), return_sequences=True))
model.add(LSTM(16, activation='relu', return_sequences=False))
model.add(RepeatVector(timesteps))
# Decoder
model.add(LSTM(16, activation='relu', return_sequences=True))
model.add(LSTM(32, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(n_features)))'''

然后使用批量大小参数拟合模型

model.fit(data, data,       
epochs=30, 
batch_size = 32)

该模型是用mse损失函数编译的,似乎在学习。

为了获取测试数据的编码器输出,我使用 K 函数:

get_encoder_output = K.function([model.layers[0].input],
[model.layers[1].output])
encoder_output = get_encoder_output([test_data])[0]

我的第一个问题是模型是否正确指定。特别是是否需要 RepeatVector 层。我不确定它在做什么。如果我省略它并用return_sequences = True指定前一层怎么办?

我的第二个问题是我是否需要告诉get_encoder_output培训中使用的batch_size

提前感谢您对任一问题的任何帮助。

这可能对您有用:

作为一个玩具问题,我创建了一个seq2seq模型来预测不同正弦波的延续。

这是模型:

def create_seq2seq():
features_num=5 
latent_dim=40
##
encoder_inputs = Input(shape=(None, features_num))
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoder_inputs)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=True)(encoded)
encoder = Model (input=encoder_inputs, output=encoded)
##
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]
decoder_inputs=Input(shape=(1, features_num))
decoder_lstm_1 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_2 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_3 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_4 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_dense = Dense(features_num)
all_outputs = []
inputs = decoder_inputs

states_1=encoder_states
# Placeholder values:
states_2=states_1; states_3=states_1; states_4=states_1
###
for _ in range(1):
# Run the decoder on the first timestep
outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1)
outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2)
outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3)
# Store the current prediction (we will concatenate all predictions later)
outputs = decoder_dense(outputs_4)
all_outputs.append(outputs)
# Reinject the outputs as inputs for the next loop iteration
# as well as update the states
inputs = outputs
states_1 = [state_h_1, state_c_1]
states_2 = [state_h_2, state_c_2]
states_3 = [state_h_3, state_c_3]
states_4 = [state_h_4, state_c_4]

for _ in range(149):
# Run the decoder on each timestep
outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1, initial_state=states_2)
outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2, initial_state=states_3)
outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3, initial_state=states_4)
# Store the current prediction (we will concatenate all predictions later)
outputs = decoder_dense(outputs_4)
all_outputs.append(outputs)
# Reinject the outputs as inputs for the next loop iteration
# as well as update the states
inputs = outputs
states_1 = [state_h_1, state_c_1]
states_2 = [state_h_2, state_c_2]
states_3 = [state_h_3, state_c_3]
states_4 = [state_h_4, state_c_4]

# Concatenate all predictions
decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)   
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
#model = load_model('pre_model.h5')

print(model.summary()
return (model)

在我看来,在 Keras 中实现 seq2seq LSTM 的最佳方法是使用 2 个 LSTM 模型,并让第一个模型将其状态转移到第二个模型。

编码器中的最后一个 LSTM 层将需要

return_state=True ,return_sequences=False这样它就会传递它的hc.

然后,您需要设置一个 LSTM 解码器,该解码器将在initial_state时接收这些内容。

对于解码器输入,您很可能希望使用"序列开始"标记作为第一个时间步长输入,然后使用nth时间步的解码器输出作为(n+1)th时间步中解码器的输入。

掌握了这一点之后,看看强迫老师。

相关内容

  • 没有找到相关文章

最新更新