将数据拟合到嗯.多项式HMM



我试图使用 hmmlearn 库预测给定一些数据的最佳序列,但我得到一个错误。我的代码是:

from hmmlearn import hmm
trans_mat = np.array([[0.2,0.6,0.2],[0.4,0.0,0.6],[0.1,0.2,0.7]])
emm_mat = np.array([[0.2,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1],[0.1,0.1,0.1,0.1,0.2,0.1,0.1,0.1,0.1],[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.2]])
start_prob = np.array([0.3,0.4,0.3])
X = [3,4,5,6,7]
model = GaussianHMM(n_components = 3, n_iter = 1000)
X = np.array(X)
model.startprob_ = start_prob
model.transmat_ = trans_mat
model.emissionprob_ = emm_mat
# Predict the optimal sequence of internal hidden state
x = model.fit([X])
print(model.decode([X]))

但我得到一个错误说:

Traceback (most recent call last):
  File "hmm_loyalty.py", line 55, in <module>
    x = model.fit([X])
  File "build/bdist.macosx-10.6-x86_64/egg/hmmlearn/base.py", line 421, in fit
  File "build/bdist.macosx-10.6-x86_64/egg/hmmlearn/hmm.py", line 183, in _init
  File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/cluster/k_means_.py", line 785, in fit
    X = self._check_fit_data(X)
  File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/cluster/k_means_.py", line 758, in _check_fit_data
X.shape[0], self.n_clusters))
ValueError: n_samples=1 should be >= n_clusters=3

任何人都知道这意味着什么以及我可以做些什么来解决它?

您的代码存在许多问题:

  1. model是一个GaussianHMM.你可能想要MultinomialHMM.
  2. 输入 X 的形状错误。对于MultinomialHMM X必须有形状(n_samples, 1),因为观测值是一维的。
  3. 除非需要估计某些模型参数,否则您不希望fit,而此处的情况并非如此。

这是一个工作版本

import numpy as np
from hmmlearn import hmm
model = hmm.MultinomialHMM(n_components=3)
model.startprob_ = np.array([0.3, 0.4, 0.3])
model.transmat_ = np.array([[0.2, 0.6, 0.2],
                            [0.4, 0.0, 0.6],
                            [0.1, 0.2, 0.7]])
model.emissionprob_ = np.array([[0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1],
                                [0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1],
                                [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.2]])
# Predict the optimal sequence of internal hidden state
X = np.atleast_2d([3, 4, 5, 6, 7]).T
print(model.decode(X))

相关内容

  • 没有找到相关文章

最新更新