Keras适合发电机的速度较慢



Kerasfit_generator非常慢。GPU在训练中没有经常使用,有时使用率会降至0%。甚至在4个工人和CCD_ 2上。

此外,脚本的进程请求的虚拟内存过多,并且处于D状态,不间断睡眠(通常为IO(

我已经尝试了max_queue_size的不同组合,但没有成功。

屏幕截图GPU使用

进程虚拟内存和状态的屏幕截图

硬件信息GPU=Titan XP 12Gb

类数据生成器代码

import numpy as np
import keras
import conf

class DataGenerator(keras.utils.Sequence):
'Generates data for Keras'
def __init__(self, list_IDs, labels, batch_size=32, dim=(conf.max_file, 128),
n_classes=10, shuffle=True):
'Initialization'
self.dim = dim
self.batch_size = batch_size
self.labels = labels
self.list_IDs = list_IDs
self.n_classes = n_classes
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Denotes the number of batches per epoch'
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size, conf.max_file, self.n_classes))
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
X[i, ] = np.load(conf.dir_out_data+"data_by_file/" + ID)
# Store class
y[i, ] = np.load(conf.dir_out_data +
'data_by_file/' + self.labels[ID])
return X, y

python脚本代码

training_generator = DataGenerator(partition['train'], labels, **params)
validation_generator = DataGenerator(partition['validation'], labels, **params)
model.fit_generator(generator = training_generator,
validation_data = validation_generator,
epochs=steps,
callbacks=[tensorboard, checkpoint],
workers=4,
use_multiprocessing=True,
max_queue_size=50)

如果您使用的是Tensorflow 2.0,您可能会遇到以下错误:https://github.com/tensorflow/tensorflow/issues/33024

解决方法包括:

  • 在代码开始时调用tf.compat.v1.disable_eager_execution()
  • 使用model.fit而不是model.fit_generator。前者无论如何都支持发电机
  • 降级至TF 1.14

无论Tensorflow版本如何,这些原则都适用:

  • 限制您正在进行的磁盘访问量,这通常是一个瓶颈
  • 在培训和验证中检查批量大小。验证中的批量大小为1将非常缓慢

尽管1.13.2和2.0.1中的发电机速度较慢(至少如此(,但似乎确实存在问题。https://github.com/keras-team/keras/issues/12683

相关内容

  • 没有找到相关文章