真正的等距投影与HTML5画布



我是HTML5 Canvas和JavaScript的新手,但是是否有一种简单的方法可以在HTML5 Canvas元素中进行等距投影?

我指的是真等距投影- http://en.wikipedia.org/wiki/Isometric_projection

感谢大家的回复。

轴测图渲染

处理轴测(通常称为等距)渲染的最佳方法是通过投影矩阵。

下面的一个投影对象可以描述你需要做任何形式的轴测投影

对象对x、y和z轴有3个变换,每个变换描述x、y、z坐标在二维投影中的比例和方向。深度计算的变换和画布像素的原点(如果setTransform(1,0,0,1,0,0)或画布的当前变换是)

要投影一个点,调用函数axoProjMat({x=10,y=10,z=10}),它将返回一个3D点,其中x,y是顶点的2D坐标,z是深度(深度值为正,接近视图(与3D透视投影相反));

  // 3d 2d points
  const P3 = (x=0, y=0, z=0) => ({x,y,z});
  const P2 = (x=0, y=0) => ({x, y});
  // projection object
  const axoProjMat = {
      xAxis : P2(1 , 0.5) ,
      yAxis :  P2(-1 , 0.5) ,
      zAxis :  P2(0 , -1) ,
      depth :  P3(0.5,0.5,1) , // projections have z as depth
      origin : P2(), // (0,0) default 2D point
      setProjection(name){
        if(projTypes[name]){
          Object.keys(projTypes[name]).forEach(key => {
            this[key]=projTypes[name][key];
          })
          if(!projTypes[name].depth){
            this.depth = P3(
              this.xAxis.y,
              this.yAxis.y,
              -this.zAxis.y
            );
          }
        }
      },
      project (p, retP = P3()) {
          retP.x = p.x * this.xAxis.x + p.y * this.yAxis.x + p.z * this.zAxis.x + this.origin.x;
          retP.y = p.x * this.xAxis.y + p.y * this.yAxis.y + p.z * this.zAxis.y + this.origin.y;
          retP.z = p.x * this.depth.x + p.y * this.depth.y + p.z * this.depth.z; 
          return retP;
      }
  }

对于上面的对象,您可以使用axoProjMat.setProjection(name)函数来选择投影类型。

以下是维基轴测投影的相关投影类型,加上像素艺术和游戏中常用的两种修改(以pixel为前缀)。使用axoProjMat.setProjection(name),其中name是projTypes属性名之一。

const D2R = (ang) => (ang-90) * (Math.PI/180 );
const Ang2Vec = (ang,len = 1) => P2(Math.cos(D2R(ang)) * len,Math.sin(D2R(ang)) * len);
const projTypes = {
  PixelBimetric : {
    xAxis : P2(1 , 0.5) ,
    yAxis :  P2(-1 , 0.5) ,
    zAxis :  P2(0 , -1) ,
    depth :  P3(0.5,0.5,1) , // projections have z as depth      
  },
  PixelTrimetric : {
    xAxis : P2(1 , 0.5) ,
    yAxis :  P2(-0.5 , 1) ,
    zAxis :  P2(0 , -1) ,
    depth :  P3(0.5,1,1) ,
  },
  Isometric : {
    xAxis : Ang2Vec(120) ,
    yAxis : Ang2Vec(-120) ,
    zAxis : Ang2Vec(0) ,
  },
  Bimetric : {
    xAxis : Ang2Vec(116.57) ,
    yAxis : Ang2Vec(-116.57) ,
    zAxis : Ang2Vec(0) ,
  },
  Trimetric : {
    xAxis : Ang2Vec(126.87,2/3) ,
    yAxis : Ang2Vec(-104.04) ,
    zAxis : Ang2Vec(0) ,
  },
  Military : {
    xAxis : Ang2Vec(135) ,
    yAxis : Ang2Vec(-135) ,
    zAxis : Ang2Vec(0) ,
  },
  Cavalier : {
    xAxis : Ang2Vec(135) ,
    yAxis : Ang2Vec(-90) ,
    zAxis : Ang2Vec(0) ,
  },
  TopDown : {
    xAxis : Ang2Vec(180) ,
    yAxis : Ang2Vec(-90) ,
    zAxis : Ang2Vec(0) ,
  }
}

真等距投影示例。

该片段是一个简单的例子,投影设置为Isometric,详见OP问题中的wiki链接,并使用上述函数和对象。

const ctx = canvas.getContext("2d");
// function creates a 3D point (vertex)
function vertex(x, y, z) { return { x, y, z}};
// an array of vertices
const vertices = []; // an array of vertices
// create the 8 vertices that make up a box
const boxSize = 20; // size of the box
const hs = boxSize / 2; // half size shorthand for easier typing
vertices.push(vertex(-hs, -hs, -hs)); // lower top left  index 0
vertices.push(vertex(hs, -hs, -hs)); // lower top right
vertices.push(vertex(hs, hs, -hs)); // lower bottom right
vertices.push(vertex(-hs, hs, -hs)); // lower bottom left
vertices.push(vertex(-hs, -hs, hs)); // upper top left  index 4
vertices.push(vertex(hs, -hs, hs)); // upper top right
vertices.push(vertex(hs, hs, hs)); // upper bottom right
vertices.push(vertex(-hs, hs, hs)); // upper  bottom left index 7
const colours = {
  dark: "#040",
  shade: "#360",
  light: "#ad0",
  bright: "#ee0",
}
function createPoly(indexes, colour) {
  return {
    indexes,
    colour
  }
}
const polygons = [];
polygons.push(createPoly([1, 2, 6, 5], colours.shade)); // right face
polygons.push(createPoly([2, 3, 7, 6], colours.light)); // front face
polygons.push(createPoly([4, 5, 6, 7], colours.bright)); // top face
// From here in I use P2,P3 to create 2D and 3D points
const P3 = (x = 0, y = 0, z = 0) => ({x,y,z});
const P2 = (x = 0, y = 0) => ({ x, y});
const D2R = (ang) => (ang-90) * (Math.PI/180 );
const Ang2Vec = (ang,len = 1) => P2(Math.cos(D2R(ang)) * len,Math.sin(D2R(ang)) * len);
const projTypes = {
  PixelBimetric : {
    xAxis : P2(1 , 0.5) ,
    yAxis :  P2(-1 , 0.5) ,
    zAxis :  P2(0 , -1) ,
    depth :  P3(0.5,0.5,1) , // projections have z as depth      
  },
  PixelTrimetric : {
    xAxis : P2(1 , 0.5) ,
    yAxis :  P2(-0.5 , 1) ,
    zAxis :  P2(0 , -1) ,
    depth :  P3(0.5,1,1) ,
  },
  Isometric : {
    xAxis : Ang2Vec(120) ,
    yAxis : Ang2Vec(-120) ,
    zAxis : Ang2Vec(0) ,
  },
  Bimetric : {
    xAxis : Ang2Vec(116.57) ,
    yAxis : Ang2Vec(-116.57) ,
    zAxis : Ang2Vec(0) ,
  },
  Trimetric : {
    xAxis : Ang2Vec(126.87,2/3) ,
    yAxis : Ang2Vec(-104.04) ,
    zAxis : Ang2Vec(0) ,
  },
  Military : {
    xAxis : Ang2Vec(135) ,
    yAxis : Ang2Vec(-135) ,
    zAxis : Ang2Vec(0) ,
  },
  Cavalier : {
    xAxis : Ang2Vec(135) ,
    yAxis : Ang2Vec(-90) ,
    zAxis : Ang2Vec(0) ,
  },
  TopDown : {
    xAxis : Ang2Vec(180) ,
    yAxis : Ang2Vec(-90) ,
    zAxis : Ang2Vec(0) ,
  }
}
const axoProjMat = {
  xAxis : P2(1 , 0.5) ,
  yAxis :  P2(-1 , 0.5) ,
  zAxis :  P2(0 , -1) ,
  depth :  P3(0.5,0.5,1) , // projections have z as depth
  origin : P2(150,65), // (0,0) default 2D point
  setProjection(name){
    if(projTypes[name]){
      Object.keys(projTypes[name]).forEach(key => {
        this[key]=projTypes[name][key];
      })
      if(!projTypes[name].depth){
        this.depth = P3(
          this.xAxis.y,
          this.yAxis.y,
          -this.zAxis.y
        );
      }
    }
  },
  project (p, retP = P3()) {
      retP.x = p.x * this.xAxis.x + p.y * this.yAxis.x + p.z * this.zAxis.x + this.origin.x;
      retP.y = p.x * this.xAxis.y + p.y * this.yAxis.y + p.z * this.zAxis.y + this.origin.y;
      retP.z = p.x * this.depth.x + p.y * this.depth.y + p.z * this.depth.z; 
      return retP;
  }
}
axoProjMat.setProjection("Isometric");
var x,y,z;
for(z = 0; z < 4; z++){
   const hz = z/2;
   for(y = hz; y < 4-hz; y++){
       for(x = hz; x < 4-hz; x++){
          // move the box
          const translated = vertices.map(vert => {
               return P3(
                   vert.x + x * boxSize, 
                   vert.y + y * boxSize, 
                   vert.z + z * boxSize, 
               );
          });
                   
          // create a new array of 2D projected verts
          const projVerts = translated.map(vert => axoProjMat.project(vert));
          // and render
          polygons.forEach(poly => {
            ctx.fillStyle = poly.colour;
            ctx.strokeStyle = poly.colour;
            ctx.lineWidth = 1;
            ctx.beginPath();
            poly.indexes.forEach(index => ctx.lineTo(projVerts[index].x , projVerts[index].y));
            ctx.stroke();
            ctx.fill();
            
          });
      }
   }
}
canvas {
  border: 2px solid black;
}
body { font-family: arial; }
True Isometric projection. With x at 120deg, and y at -120deg from up.<br>
<canvas id="canvas"></canvas>

首先,我建议将游戏世界想象成一个规则的X X Y方格。这使得一切从碰撞检测,寻径,甚至渲染更容易。

要以等距投影呈现地图,只需修改投影矩阵:

var ctx = canvas.getContext('2d');
function render(ctx) {
    var dx = 0, dy = 0;
    ctx.save();
    // change projection to isometric view
    ctx.translate(view.x, view.y);
    ctx.scale(1, 0.5);
    ctx.rotate(45 * Math.PI /180);
    for (var y = 0; i < 10; y++) {
        for (var x = 0; x < 10; x++) {
            ctx.strokeRect(dx, dy, 40, 40);
            dx += 40;
        }
        dx = 0;
        dy += 40;
    }
    ctx.restore(); // back to orthogonal projection
    // Now, figure out which tile is under the mouse cursor... :)
}

这是令人兴奋的第一次你得到它的工作,但你很快就会意识到,它不是那么有用绘制实际的等距地图…你不能只是旋转你的平铺图像,看看拐角处有什么。这些转换不是为了绘图,而是为了在屏幕空间和世界空间之间进行转换。

奖励:找出鼠标在哪个贴图上

你要做的是从"视图坐标"(从画布原点的像素偏移量)转换到"世界坐标"(沿着对角线轴从0,0 贴图的像素偏移量)。然后简单地将世界坐标除以贴图的宽度和高度,就得到了"地图坐标"。

理论上,你所需要做的就是用上面投影矩阵的来投影"视图位置"向量,从而得到"世界位置"。我说理论上,是因为由于某种原因,画布没有提供返回当前投影矩阵的方法。有一个setTransform()方法,但没有getTransform(),所以这是你必须滚动自己的3x3变换矩阵的地方。

这实际上并不难,当你绘制对象时,你将需要在世界和视图坐标之间进行转换。

我为我的等距应用程序创建了这个

class IsoProjection {
    constructor() {
        this.matP = [1, 0, 0, 1, 0, 0];
        this.matI = [1, 0, 0, 1, 0, 0];
        this.mapRatio = 1;
        this.mapRatioI = 1;
    }
    isoToTilePos(a, ao) {
        let m = this.matI,
        b = ao || [],
        i = 0,
        j = 1;
        do {
            j = i + 1;
            b[i] = a[i] * m[0] + a[j] * m[2] + m[4];
            b[j] = a[i] * m[1] + a[j] * m[3] + m[5];
            i += 2;
        } while (i < a.length);
        return b;
    }
    tileToIsoPos(a, ao) {
        let m = this.matP,
        b = ao || [],
        i = 0,
        j = 1;
        do {
            j = i + 1;
            b[i] = a[i] * m[0] + a[j] * m[2] + m[4];
            b[j] = a[i] * m[1] + a[j] * m[3] + m[5];
            i += 2;
        } while (i < a.length);
        return b;
    }
    reset(numC, numR, cellW, cellH) {
        /*
            Math.sqrt(2 * isoW * isoW) = cellW
            isoW = Math.sqrt(cellW * cellW / 2);
            while map's tileW = 1
        */
        let isoW = Math.sqrt(cellW * cellW / 2);
        this.mapRatio = isoW;
        this.mapRatioI = 1 / isoW;
        // translation
        let ctr = Math.max(numC, numR) / 2;
        //rotation
        let rot = -Math.PI / 4;
        let cos = Math.cos(rot);
        let sin = Math.sin(rot);
        // scale
        let sx = isoW;
        let sy = cellH / cellW * isoW;
        // the matrix
        this.matP[0] = sx * cos;
        this.matP[1] = sy * sin;
        this.matP[2] = sx * -sin;
        this.matP[3] = sy * cos;
        this.matP[4] = 0;
        this.matP[5] = 0;
        // the inverted matrix;
        let a = this.matP[0],
        b = this.matP[1],
        c = this.matP[2],
        d = this.matP[3],
        e = this.matP[4],
        f = this.matP[5];
        let det = a * d - b * c;
        if (det !== 0) {
            det = 1 / det;
            this.matI[0] = d * det;
            this.matI[1] =  - b * det;
            this.matI[2] =  - c * det;
            this.matI[3] = a * det;
            this.matI[4] = (c * f - e * d) * det;
            this.matI[5] = (e * b - a * f) * det;
        } else {
            this.matI[0] = a;
            this.matI[1] = b;
            this.matI[2] = c;
            this.matI[3] = d;
            this.matI[4] = e;
            this.matI[5] = f;
        }
        return this;
    }
}

相关内容

  • 没有找到相关文章

最新更新