从结构元素的嵌套数组创建 Spark 数据帧?



>我已经将一个JSON文件读入Spark。此文件具有以下结构:

root
|-- engagement: struct (nullable = true)
|    |-- engagementItems: array (nullable = true)
|    |    |-- element: struct (containsNull = true)
|    |    |    |-- availabilityEngagement: struct (nullable = true)
|    |    |    |    |-- dimapraUnit: struct (nullable = true)
|    |    |    |    |    |-- code: string (nullable = true)
|    |    |    |    |    |-- constrained: boolean (nullable = true)
|    |    |    |    |    |-- id: long (nullable = true)
|    |    |    |    |    |-- label: string (nullable = true)
|    |    |    |    |    |-- ranking: long (nullable = true)
|    |    |    |    |    |-- type: string (nullable = true)
|    |    |    |    |    |-- version: long (nullable = true)
|    |    |    |    |    |-- visible: boolean (nullable = true)

我创建了一个递归函数来使用嵌套 StructType 的列平展架构

def flattenSchema(schema: StructType, prefix: String = null):Array[Column]= 
{
schema.fields.flatMap(f => {
val colName = if (prefix == null) f.name else (prefix + "." + f.name)
f.dataType match {
case st: StructType => flattenSchema(st, colName)
case _ => Array(col(colName).alias(colName))
}
})
}
val newDF=SIWINSDF.select(flattenSchema(SIWINSDF.schema):_*)
val secondDF=newDF.toDF(newDF.columns.map(_.replace(".", "_")): _*)

如何展平包含嵌套结构类型的数组类型,例如参与项:数组(可为空 = 真)

任何帮助,不胜感激。

这里的问题是您需要管理ArrayType的情况,然后将其转换为StructType。因此,您可以使用 Scala 运行时转换来实现此目的。

首先,我生成了下一个场景(顺便说一句,将其包含在您的问题中会非常有帮助,因为使问题的重现变得更加容易):

case class DimapraUnit(code: String, constrained: Boolean, id: Long, label: String, ranking: Long, _type: String, version: Long, visible: Boolean)
case class AvailabilityEngagement(dimapraUnit: DimapraUnit)
case class Element(availabilityEngagement: AvailabilityEngagement)
case class Engagement(engagementItems: Array[Element])
case class root(engagement: Engagement)
def getSchema(): StructType ={
import org.apache.spark.sql.types._
import org.apache.spark.sql.catalyst.ScalaReflection
val schema = ScalaReflection.schemaFor[root].dataType.asInstanceOf[StructType]
schema.printTreeString()
schema
}

这将打印出:

root
|-- engagement: struct (nullable = true)
|    |-- engagementItems: array (nullable = true)
|    |    |-- element: struct (containsNull = true)
|    |    |    |-- availabilityEngagement: struct (nullable = true)
|    |    |    |    |-- dimapraUnit: struct (nullable = true)
|    |    |    |    |    |-- code: string (nullable = true)
|    |    |    |    |    |-- constrained: boolean (nullable = false)
|    |    |    |    |    |-- id: long (nullable = false)
|    |    |    |    |    |-- label: string (nullable = true)
|    |    |    |    |    |-- ranking: long (nullable = false)
|    |    |    |    |    |-- _type: string (nullable = true)
|    |    |    |    |    |-- version: long (nullable = false)
|    |    |    |    |    |-- visible: boolean (nullable = false)

然后我通过添加对 ArrayType 的额外检查并使用asInstanceOf将其转换为 StructType 来修改您的函数:

import org.apache.spark.sql.types._  
def flattenSchema(schema: StructType, prefix: String = null):Array[Column]=
{
schema.fields.flatMap(f => {
val colName = if (prefix == null) f.name else (prefix + "." + f.name)
f.dataType match {
case st: StructType => flattenSchema(st, colName)
case at: ArrayType =>
val st = at.elementType.asInstanceOf[StructType]
flattenSchema(st, colName)
case _ => Array(new Column(colName).alias(colName))
}
})
}

最后的结果:

val s = getSchema()
val res = flattenSchema(s)
res.foreach(println(_))

输出:

engagement.engagementItems.availabilityEngagement.dimapraUnit.code AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.code`
engagement.engagementItems.availabilityEngagement.dimapraUnit.constrained AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.constrained`
engagement.engagementItems.availabilityEngagement.dimapraUnit.id AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.id`
engagement.engagementItems.availabilityEngagement.dimapraUnit.label AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.label`
engagement.engagementItems.availabilityEngagement.dimapraUnit.ranking AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.ranking`
engagement.engagementItems.availabilityEngagement.dimapraUnit._type AS `engagement.engagementItems.availabilityEngagement.dimapraUnit._type`
engagement.engagementItems.availabilityEngagement.dimapraUnit.version AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.version`
engagement.engagementItems.availabilityEngagement.dimapraUnit.visible AS `engagement.engagementItems.availabilityEngagement.dimapraUnit.visible`

相关内容

  • 没有找到相关文章

最新更新