Python中更有效的加权Gini系数



每https://stackoverflow.com/a/48981834/1840471,这是Python中加权Gini系数的实现:

import numpy as np
def gini(x, weights=None):
    if weights is None:
        weights = np.ones_like(x)
    # Calculate mean absolute deviation in two steps, for weights.
    count = np.multiply.outer(weights, weights)
    mad = np.abs(np.subtract.outer(x, x) * count).sum() / count.sum()
    rmad = mad / np.average(x, weights=weights)
    # Gini equals half the relative mean absolute deviation.
    return 0.5 * rmad

这很干净,适用于中型阵列,但是正如其初始建议(https://stackoverflow.com/a/39513799/1840471(中所警告的那样(n 2 (。在我的计算机上,这意味着它在〜20k行之后破裂:

n = 20000  # Works, 30000 fails.
gini(np.random.rand(n), np.random.rand(n))

是否可以调整此功能以适用于较大的数据集?我的是〜150k行。

这是一个比上面提供的版本要快得多,并且还使用简化的公式对情况进行了无重量的速度。

def gini(x, w=None):
    # The rest of the code requires numpy arrays.
    x = np.asarray(x)
    if w is not None:
        w = np.asarray(w)
        sorted_indices = np.argsort(x)
        sorted_x = x[sorted_indices]
        sorted_w = w[sorted_indices]
        # Force float dtype to avoid overflows
        cumw = np.cumsum(sorted_w, dtype=float)
        cumxw = np.cumsum(sorted_x * sorted_w, dtype=float)
        return (np.sum(cumxw[1:] * cumw[:-1] - cumxw[:-1] * cumw[1:]) / 
                (cumxw[-1] * cumw[-1]))
    else:
        sorted_x = np.sort(x)
        n = len(x)
        cumx = np.cumsum(sorted_x, dtype=float)
        # The above formula, with all weights equal to 1 simplifies to:
        return (n + 1 - 2 * np.sum(cumx) / cumx[-1]) / n

这是一些测试代码要检查我们得到的(主要(相同的结果:

>>> x = np.random.rand(1000000)
>>> w = np.random.rand(1000000)
>>> gini_max_ghenis(x, w)
0.33376310938610521
>>> gini(x, w)
0.33376310938610382

但是速度有很大不同:

%timeit gini(x, w)
203 ms ± 3.68 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit gini_max_ghenis(x, w)
55.6 s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

如果您从功能中删除熊猫OPS,它已经快得多:

%timeit gini_max_ghenis_no_pandas_ops(x, w)
1.62 s ± 75 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

如果您想获得最后的性能,则可以使用Numba或Cython,但这只会增加几%,因为大多数时间都用于分类。

%timeit ind = np.argsort(x); sx = x[ind]; sw = w[ind]
180 ms ± 4.82 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

编辑:gini_max_ghenis是Max Ghenis的答案中使用的代码

从这里适应StatsGini R函数:

import numpy as np
import pandas as pd
def gini(x, w=None):
    # Array indexing requires reset indexes.
    x = pd.Series(x).reset_index(drop=True)
    if w is None:
        w = np.ones_like(x)
    w = pd.Series(w).reset_index(drop=True)
    n = x.size
    wxsum = sum(w * x)
    wsum = sum(w)
    sxw = np.argsort(x)
    sx = x[sxw] * w[sxw]
    sw = w[sxw]
    pxi = np.cumsum(sx) / wxsum
    pci = np.cumsum(sw) / wsum
    g = 0.0
    for i in np.arange(1, n):
        g = g + pxi.iloc[i] * pci.iloc[i - 1] - pci.iloc[i] * pxi.iloc[i - 1]
    return g

这适用于大型向量,至少最多可达10m行:

n = 1e7
gini(np.random.rand(n), np.random.rand(n))  # Takes ~15s.

它也产生与问题中提供的函数相同的结果,例如为此示例提供0.2553:

gini(np.array([3, 1, 6, 2, 1]), np.array([4, 2, 2, 10, 1]))

相关内容

  • 没有找到相关文章

最新更新