佩林噪声值范围



我使用perlin噪波生成2D高度图。起初,我手动尝试了一些参数,发现振幅、持久性和,。。。为了我的工作。

现在我正在开发这个程序,我为用户添加了更改地图参数并为自己制作新地图的功能,但现在我发现,对于某些参数(主要是八度音阶和频率),值不在我以前看到的范围内。我认为,如果设置Amplitude=20,我从中获得的值(高度)将在例如[0,20]或[-10,10]或[-20,20]范围内,但现在我发现Amplitude并不是控制输出范围的唯一参数。

我的问题是:是否有一个精确的数学公式(振幅、倍频程、频率和持久性的函数)来计算范围,或者我应该取很多样本(比如100000),检查它们的最小值和最大值,以猜测近似范围?

注意:下面的代码是一个perlin-noise的实现,stackoverflow的一个家伙用C编写了它,并将它移植到了java中。

PerlinNoiseParameters.java

public class PerlinNoiseParameters {
    public double persistence;
    public double frequency;
    public double amplitude;
    public int octaves;
    public int randomseed;
    public PerlinNoiseParameters(double persistence, double frequency, double amplitude, int octaves, int randomseed) {
        this.ChangeParameters(persistence, frequency, amplitude, octaves, randomseed);
    }
    public void ChangeParameters(double persistence, double frequency, double amplitude, int octaves, int randomseed) {
        this.persistence = persistence;
        this.frequency = frequency;
        this.amplitude = amplitude;
        this.octaves = octaves;
        this.randomseed = 2 + randomseed * randomseed;
    }
}

PerlinNoiseGenerator.java

public class PerlinNoiseGenerator {
    PerlinNoiseParameters parameters;
    public PerlinNoiseGenerator() {
    }
    public PerlinNoiseGenerator(PerlinNoiseParameters parameters) {
        this.parameters = parameters;
    }
    public void ChangeParameters(double persistence, double frequency, double amplitude, int octaves, int randomseed) {
        parameters.ChangeParameters(persistence, frequency, amplitude, octaves, randomseed);
    }
    public void ChangeParameters(PerlinNoiseParameters newParams) {
        parameters = newParams;
    }
    public double get(double x, double y) {
        return parameters.amplitude * Total(x, y);
    }
    private double Total(double i, double j) {
        double t = 0.0f;
        double _amplitude = 1;
        double freq = parameters.frequency;
        for (int k = 0; k < parameters.octaves; k++) {
            t += GetValue(j * freq + parameters.randomseed, i * freq + parameters.randomseed)
                    * _amplitude;
            _amplitude *= parameters.persistence;
            freq *= 2;
        }
        return t;
    }
    private double GetValue(double x, double y) {
        int Xint = (int) x;
        int Yint = (int) y;
        double Xfrac = x - Xint;
        double Yfrac = y - Yint;
        double n01 = Noise(Xint - 1, Yint - 1);
        double n02 = Noise(Xint + 1, Yint - 1);
        double n03 = Noise(Xint - 1, Yint + 1);
        double n04 = Noise(Xint + 1, Yint + 1);
        double n05 = Noise(Xint - 1, Yint);
        double n06 = Noise(Xint + 1, Yint);
        double n07 = Noise(Xint, Yint - 1);
        double n08 = Noise(Xint, Yint + 1);
        double n09 = Noise(Xint, Yint);
        double n12 = Noise(Xint + 2, Yint - 1);
        double n14 = Noise(Xint + 2, Yint + 1);
        double n16 = Noise(Xint + 2, Yint);
        double n23 = Noise(Xint - 1, Yint + 2);
        double n24 = Noise(Xint + 1, Yint + 2);
        double n28 = Noise(Xint, Yint + 2);
        double n34 = Noise(Xint + 2, Yint + 2);
        double x0y0 = 0.0625 * (n01 + n02 + n03 + n04) + 0.1250
                * (n05 + n06 + n07 + n08) + 0.2500 * n09;
        double x1y0 = 0.0625 * (n07 + n12 + n08 + n14) + 0.1250
                * (n09 + n16 + n02 + n04) + 0.2500 * n06;
        double x0y1 = 0.0625 * (n05 + n06 + n23 + n24) + 0.1250
                * (n03 + n04 + n09 + n28) + 0.2500 * n08;
        double x1y1 = 0.0625 * (n09 + n16 + n28 + n34) + 0.1250
                * (n08 + n14 + n06 + n24) + 0.2500 * n04;
        double v1 = Interpolate(x0y0, x1y0, Xfrac);
        double v2 = Interpolate(x0y1, x1y1, Xfrac);
        double fin = Interpolate(v1, v2, Yfrac);
        return fin;
    }
    private double Interpolate(double x, double y, double a) {
        double negA = 1.0 - a;
        double negASqr = negA * negA;
        double fac1 = 3.0 * (negASqr) - 2.0 * (negASqr * negA);
        double aSqr = a * a;
        double fac2 = 3.0 * aSqr - 2.0 * (aSqr * a);
        return x * fac1 + y * fac2;
    }
    private double Noise(int x, int y) {
        int n = x + y * 57;
        n = (n << 13) ^ n;
        int t = (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff;
        return 1.0 - (double) t * 0.931322574615478515625e-9;
    }
}

单个柏林噪声步长的范围为:http://digitalfreepen.com/2017/06/20/range-perlin-noise.html

-sqrt(N/4), sqrt(N/4)

其中N是维度的数量。2在你的情况下。

八度音阶、持久性和振幅加在上面:

double range = 0.0;
double _amplitude = parameters.;
for (int k = 0; k < parameters.octaves; k++) {
    range += sqrt(N/4) * _amplitude;
    _amplitude *= parameters.persistence;
}
return range;

也许有一些方法可以将其作为一个单独的数学表达式来实现。涉及pow(),但我现在脑子不好。

这不是八度和频率影响振幅的问题,至少不是直接的问题。这是整数溢出的问题。因为你通过将随机种子添加到x和y坐标来引入它(这很不寻常,我不认为这是通常的实现)

t += GetValue(j * freq + parameters.randomseed, i * freq + parameters.randomseed)* _amplitude;

随机种子可能是巨大的(可能接近整数的大小),因为

this.randomseed = 2 + randomseed * randomseed;

因此,如果您为j和i输入大值,那么在GetValue(double x, double y)处传递的doubles将大于int的最大大小,此时,当您调用时

int Xint = (int) x;
int Yint = (int) y;

Xint和YInt不会像x和y那样(因为x和y可能很大!)所以

double Xfrac = x - Xint;
double Yfrac = y - Yint;

可以比1大得多,允许返回不在-1和1之间的值。

使用合理和小的值,我使用你的代码的范围在-1和1之间(对于幅度1)


作为助手,在java中,方法名称通常是methodName,而不是MethodName

如果有用的话,请在这里找到perlin noise的其他java实现:http://mrl.nyu.edu/~perlin/noise/

相关内容

  • 没有找到相关文章

最新更新