我想这个问题是问之前,但我没有找到一个样本或解决方案为我的问题。我是opencv的新手,我想使用opencv CameraPreview进行纸张检测。在我的示例应用程序中,我使用静态初始化的opencv 3.0.0。我知道物体识别可以通过以下步骤完成:
- 设置输入图像为Canny
- 模糊Canny图像
- 查找模糊Canny图像上的轮廓
- 查找矩形等
- 绘制线条或用半透明颜色填充矩形
我的问题是,现在我可以狡猾和模糊的图像,但我不知道如何找到轮廓和矩形和填充它们与半透明的颜色。
这是我当前的onCameraFrame函数:
@Override
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
Mat input = inputFrame.rgba();
Mat output = input.clone();
Imgproc.Canny(input, output, 50, 50);
Imgproc.blur(output, output,new Size(5,5));
//Find Contours
//Search for biggest Contour/Rectangle
//Fill Rectangle with half transparent Color
return output;
}
谁能帮我解决纸张检测的问题,并有一个代码样本为android/java?谢谢你
以下代码来自我正在开发的Open Note Scanner应用程序,您可以使用它来查找更多信息。
函数findDocument将返回一个四边形对象,该对象封装了包含轮廓的MatOfPoint和包含单个点的Point[]。你可以调用它,并使用返回的对象调用Imgproc.drawContours()来完成你的图像。
所有的代码都是基于pyimagesearch这个优秀的教程编写的
注意:这是从我的代码中快速移植的方法,它没有语法错误,但我没有测试它。
package com.todobom.opennotescanner.views;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
public class detectDocument {
/**
* Object that encapsulates the contour and 4 points that makes the larger
* rectangle on the image
*/
public static class Quadrilateral {
public MatOfPoint contour;
public Point[] points;
public Quadrilateral(MatOfPoint contour, Point[] points) {
this.contour = contour;
this.points = points;
}
}
public static Quadrilateral findDocument( Mat inputRgba ) {
ArrayList<MatOfPoint> contours = findContours(inputRgba);
Quadrilateral quad = getQuadrilateral(contours);
return quad;
}
private static ArrayList<MatOfPoint> findContours(Mat src) {
double ratio = src.size().height / 500;
int height = Double.valueOf(src.size().height / ratio).intValue();
int width = Double.valueOf(src.size().width / ratio).intValue();
Size size = new Size(width,height);
Mat resizedImage = new Mat(size, CvType.CV_8UC4);
Mat grayImage = new Mat(size, CvType.CV_8UC4);
Mat cannedImage = new Mat(size, CvType.CV_8UC1);
Imgproc.resize(src,resizedImage,size);
Imgproc.cvtColor(resizedImage, grayImage, Imgproc.COLOR_RGBA2GRAY, 4);
Imgproc.GaussianBlur(grayImage, grayImage, new Size(5, 5), 0);
Imgproc.Canny(grayImage, cannedImage, 75, 200);
ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannedImage, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
hierarchy.release();
Collections.sort(contours, new Comparator<MatOfPoint>() {
@Override
public int compare(MatOfPoint lhs, MatOfPoint rhs) {
return Double.valueOf(Imgproc.contourArea(rhs)).compareTo(Imgproc.contourArea(lhs));
}
});
resizedImage.release();
grayImage.release();
cannedImage.release();
return contours;
}
private static Quadrilateral getQuadrilateral(ArrayList<MatOfPoint> contours) {
for ( MatOfPoint c: contours ) {
MatOfPoint2f c2f = new MatOfPoint2f(c.toArray());
double peri = Imgproc.arcLength(c2f, true);
MatOfPoint2f approx = new MatOfPoint2f();
Imgproc.approxPolyDP(c2f, approx, 0.02 * peri, true);
Point[] points = approx.toArray();
// select biggest 4 angles polygon
if (points.length == 4) {
Point[] foundPoints = sortPoints(points);
return new Quadrilateral(c, foundPoints);
}
}
return null;
}
private static Point[] sortPoints(Point[] src) {
ArrayList<Point> srcPoints = new ArrayList<>(Arrays.asList(src));
Point[] result = { null , null , null , null };
Comparator<Point> sumComparator = new Comparator<Point>() {
@Override
public int compare(Point lhs, Point rhs) {
return Double.valueOf(lhs.y + lhs.x).compareTo(rhs.y + rhs.x);
}
};
Comparator<Point> diffComparator = new Comparator<Point>() {
@Override
public int compare(Point lhs, Point rhs) {
return Double.valueOf(lhs.y - lhs.x).compareTo(rhs.y - rhs.x);
}
};
// top-left corner = minimal sum
result[0] = Collections.min(srcPoints, sumComparator);
// bottom-right corner = maximal sum
result[2] = Collections.max(srcPoints, sumComparator);
// top-right corner = minimal diference
result[1] = Collections.min(srcPoints, diffComparator);
// bottom-left corner = maximal diference
result[3] = Collections.max(srcPoints, diffComparator);
return result;
}
}