我使用Tensorflow(版本1.7.0和Python 3.5(作为神经网络,并且在使用tf.train.batch()
函数时遇到问题。看这里。
我的数据集的维度为:
测试图像(100000、900(测试标签 (100000, 10(
所以我有 100000 张大小为 30 x 30 像素的测试图像。标签是大小为 100000 x 10 的单热矩阵。
import numpy as np
train_images = np.load("train_images.npy")
train_labels = np.load("train_labels.npy")
现在我想随机获取一个大小为 100 的批次,并想使用函数 tf.train.batch()
.
我在代码中按如下方式使用该函数:
# Launch the graph
with tf.Session() as sess:
sess.run(init)
num_examples=100000
batch_size = 100
# Training cycle
for epoch in range(training_epochs):
total_batch = int(num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = tf.train.batch(
[train_images, train_labels],
batch_size=batch_size,
allow_smaller_final_batch=True,
)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y:batch_y})
这样做时,我收到以下错误:
Traceback (most recent call last):
File "my_network.py", line 124, in <module>
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y:batch_y})
File "/home/samuel/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 905, in run
run_metadata_ptr)
File "/home/samuel/tensorflow/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1091, in _run
'feed with key ' + str(feed) + '.')
TypeError: The value of a feed cannot be a tf.Tensor object.
Acceptable feed values include Python scalars, strings, lists,
numpy ndarrays, or TensorHandles.For reference, the tensor object was
Tensor("batch:0", shape=(?, 900), dtype=uint8) which was passed to the
feed with key Tensor("Placeholder:0", shape=(?, 900), dtype=float32).
我该怎么做才能使用tf.train.batch()
以使我的网络正常工作?是否需要使用其他方法创建小批量?
tf.train.batch已被弃用,您应该改用tf.data进行批处理。
可是。。。
为了清楚起见,您应该将图形构建和图形运行步骤分开。
然后,当使用tf.train.batch时,在构建图形之后但在运行任何操作之前,您需要运行tf.queue_runner.start_queue_runners((来启动线程,该线程将数据预取为批处理。