熊猫数据帧中列数组的行值



我有一个Pandas数据帧,看起来像这样:

+---+--------+-------------+------------------+
|   | ItemID | Description | Feedback         |
+---+--------+-------------+------------------+
| 0 | 8988   | Tall Chair  | I hated it       |
+---+--------+-------------+------------------+
| 1 | 8988   | Tall Chair  | Best chair ever  |
+---+--------+-------------+------------------+
| 2 | 6547   | Big Pillow  | Soft and amazing |
+---+--------+-------------+------------------+
| 3 | 6547   | Big Pillow  | Horrific color   |
+---+--------+-------------+------------------+

我想将"反馈"列中的值连接到一个新列中,用逗号分隔,其中 ItemID 匹配。这样:

+---+--------+-------------+----------------------------------+
|   | ItemID | Description | NewColumn                        |
+---+--------+-------------+----------------------------------+
| 0 | 8988   | Tall Chair  | I hated it, Best chair ever      |
+---+--------+-------------+----------------------------------+
| 1 | 6547   | Big Pillow  | Soft and amazing, Horrific color |
+---+--------+-------------+----------------------------------+

我已经尝试了枢轴、合并、堆叠等的几种变体,但卡住了。
我认为NewColumn最终会成为一个数组,但我对Python相当陌生,所以我不确定。
此外,最终,我将尝试将其用于文本分类(对于新的"描述"生成一些"反馈"标签[多类问题])

在数据帧上调用.groupby('ItemID'),然后连接反馈列:

df.groupby('ItemID')['Feedback'].apply(lambda x: ', '.join(x))

请参阅 Pandas groupby: How to get a union of strings。

我认为您可以按列ItemIDDescriptionapply join和最后reset_index groupby

print df.groupby(['ItemID', 'Description'])['Feedback'].apply(', '.join).reset_index(name='NewColumn')
   ItemID Description                         NewColumn
0    6547  Big Pillow  Soft and amazing, Horrific color
1    8988  Tall Chair       I hated it, Best chair ever

如果您不需要Description列:

print df.groupby(['ItemID'])['Feedback'].apply(', '.join).reset_index(name='NewColumn')
   ItemID                         NewColumn
0    6547  Soft and amazing, Horrific color
1    8988       I hated it, Best chair ever

相关内容

  • 没有找到相关文章