MapReduce相关-我在这里做错了什么



我是Map-Reduce编程范式的新手。所以,我的问题对很多人来说可能听起来非常愚蠢。然而,我请求大家对我宽容。

我正在尝试计数特定单词在文件中的出现次数。现在,我为此编写了以下Java类:

它的输入文件有以下条目:

The tiger entered village in the night the the 
Then ... the story continues...
I have put the word 'the' many times because of my own program purpose.

WordCountMapper.java

package com.demo.map_reduce.word_count.mapper;
import java.io.IOException;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>
{
@SuppressWarnings({ "rawtypes", "unchecked" })
@Override
protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {
       if(null != value) {
          final String line = value.toString();
          if(StringUtils.containsIgnoreCase(line, "the")) {
             context.write(new Text("the"), new IntWritable(StringUtils.countMatches(line, "the")));
          }
       }
    }
}

WordCountReducer.java

package com.demo.map_reduce.word_count.reducer;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>
{
   @SuppressWarnings({ "rawtypes", "unchecked" })
   public void reduce(Text key, Iterable<IntWritable> values, org.apache.hadoop.mapreduce.Reducer.Context context)
        throws IOException, InterruptedException {
          int count = 0;
      for (final IntWritable nextValue : values) {
             count += nextValue.get();
          }
          context.write(key, new IntWritable(count));
    }
}

WordCounter.java

package com.demo.map_reduce.word_count;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import com.demo.map_reduce.word_count.mapper.WordCountMapper;
import com.demo.map_reduce.word_count.reducer.WordCountReducer;
public class WordCounter
{
    public static void main(String[] args) {
        final String inputDataPath = "/input/my_wordcount_1/input_data_file.txt";
        final String outputDataDir = "/output/my_wordcount_1";
        try {
            final Job job = Job.getInstance();
            job.setJobName("Simple word count");
            job.setJarByClass(WordCounter.class);
            job.setMapperClass(WordCountMapper.class);
            job.setReducerClass(WordCountReducer.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(inputDataPath));
            FileOutputFormat.setOutputPath(job, new Path(outputDataDir));
            job.waitForCompletion(true);
        }
    } catch (Exception e) {
        e.printStackTrace();
    }
}

当我在Hadoop中运行这个程序时,我得到以下输出。

the 2
the 1
the 3

我希望减速器结果

the 4

我肯定我做错了什么;或者我可能没有完全理解。有人能帮我一下吗?

提前感谢。

-Niranjan

问题是您的reduce方法没有被调用
要使其工作,只需将reduce函数的签名更改为

public void reduce(Text key, Iterable<IntWritable> values, Context context)
        throws IOException, InterruptedException {

问题是您没有规范化关键字,也没有计算单词数,而是计算包含单词the的行数。

将您的映射逻辑更改为以下

protected void map(LongWritable key, Text value, org.apache.hadoop.mapreduce.Mapper.Context context) throws IOException, InterruptedException {
    if(null != value) {
        final String line = value.toString();
        for(String word:line.split("\s+")){
            context.write(new Text(word.trim().toLowerCase()), new IntWritable(1));
        }
    }
}

并将逻辑简化为如下

public void reduce(Text key, Iterable<IntWritable> values, org.apache.hadoop.mapreduce.Reducer.Context context)
        throws IOException, InterruptedException {
    int count = 0;
    if(key.toString().trim().toLowerCase().equals("the")) {
        for (final IntWritable nextValue : values) {
            count += nextValue.get();
        }
        context.write(key, new IntWritable(count));
    }        
}

相关内容

  • 没有找到相关文章

最新更新