Hadoop MapReduce作业成功完成,但没有'不要向DB写入任何内容



我正在编写一个MR作业来挖掘Web服务器日志。作业的输入来自文本文件,输出到MySQL数据库。问题是,作业成功完成,但没有向数据库写入任何内容。我已经有一段时间没有做MR编程了,所以很可能是我找不到的错误。这不是模式匹配(见下文),我已经进行了单元测试并运行良好。我错过了什么?Mac OS X, Oracle JDK 1.8.0_31, hadoop-2.6.0注意:异常记录在日志中,为了简洁起见,我省略了它们。

可跳过日志记录:

public class SkippableLogRecord implements WritableComparable<SkippableLogRecord> {
    // fields
    public SkippableLogRecord(Text line) {
        readLine(line.toString());
    }
    private void readLine(String line) {
        Matcher m = PATTERN.matcher(line);
        boolean isMatchFound = m.matches() && m.groupCount() >= 5;
        if (isMatchFound) {
        try {
            jvm = new Text(m.group("jvm"));
            Calendar cal = getInstance();
            cal.setTime(new SimpleDateFormat(DATE_FORMAT).parse(m
            .group("date")));
            day = new IntWritable(cal.get(DAY_OF_MONTH));
            month = new IntWritable(cal.get(MONTH));
            year = new IntWritable(cal.get(YEAR));
            String p = decode(m.group("path"), UTF_8.name());
            root = new Text(p.substring(1, p.indexOf(FILE_SEPARATOR, 1)));
            filename = new Text(
            p.substring(p.lastIndexOf(FILE_SEPARATOR) + 1));
            path = new Text(p);
            status = new IntWritable(Integer.parseInt(m.group("status")));
            size = new LongWritable(Long.parseLong(m.group("size")));
        } catch (ParseException | UnsupportedEncodingException e) {
            isMatchFound = false;
        }
    }
    public boolean isSkipped() {
        return jvm == null;
    }
    @Override
    public void readFields(DataInput in) throws IOException {
        jvm.readFields(in);
        day.readFields(in);
        // more code
    }
    @Override
    public void write(DataOutput out) throws IOException {
        jvm.write(out);
        day.write(out);
        // more code
    }
    @Override
    public int compareTo(SkippableLogRecord other) {...}
    @Override
    public boolean equals(Object obj) {...}
}

映射器:

public class LogMapper extends
    Mapper<LongWritable, Text, SkippableLogRecord, NullWritable> {    
    @Override
    protected void map(LongWritable key, Text line, Context context) {
        SkippableLogRecord rec = new SkippableLogRecord(line);
        if (!rec.isSkipped()) {
            try {
                context.write(rec, NullWritable.get());
            } catch (IOException | InterruptedException e) {...}
        }
    }
}

减速器:

public class LogReducer extends
    Reducer<SkippableLogRecord, NullWritable, DBRecord, NullWritable> {    
    @Override
    protected void reduce(SkippableLogRecord rec,
        Iterable<NullWritable> values, Context context) {
        try {
            context.write(new DBRecord(rec), NullWritable.get());
        } catch (IOException | InterruptedException e) {...}
    }
}

数据库记录:

public class DBRecord implements Writable, DBWritable {
    // fields
    public DBRecord(SkippableLogRecord logRecord) {
        jvm = logRecord.getJvm().toString();
        day = logRecord.getDay().get();
        // more code for rest of the fields
    }
    @Override
    public void readFields(ResultSet rs) throws SQLException {
        jvm = rs.getString("jvm");
        day = rs.getInt("day");
        // more code for rest of the fields
    }
    @Override
    public void write(PreparedStatement ps) throws SQLException {
        ps.setString(1, jvm);
        ps.setInt(2, day);
        // more code for rest of the fields
    }
}

驱动程序:

public class Driver extends Configured implements Tool {
    @Override
    public int run(String[] args) throws Exception {
        Configuration conf = getConf();
        DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", // driver
        "jdbc:mysql://localhost:3306/aac", // db url
        "***", // user name
        "***"); // password
        Job job = Job.getInstance(conf, "log-miner");
        job.setJarByClass(getClass());
        job.setMapperClass(LogMapper.class);
        job.setReducerClass(LogReducer.class);
        job.setMapOutputKeyClass(SkippableLogRecord.class);
        job.setMapOutputValueClass(NullWritable.class);
        job.setOutputKeyClass(DBRecord.class);
        job.setOutputValueClass(NullWritable.class);
        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(DBOutputFormat.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        DBOutputFormat.setOutput(job, "log", // table name
        new String[] { "jvm", "day", "month", "year", "root",
            "filename", "path", "status", "size" } // table columns
        );
        return job.waitForCompletion(true) ? 0 : 1;
    }
    public static void main(String[] args) throws Exception {
        GenericOptionsParser parser = new GenericOptionsParser(
        new Configuration(), args);
        ToolRunner.run(new Driver(), parser.getRemainingArgs());
    }
}

作业执行日志:

15/02/28 02:17:58 INFO mapreduce.Job:  map 100% reduce 100%
15/02/28 02:17:58 INFO mapreduce.Job: Job job_local166084441_0001 completed successfully
15/02/28 02:17:58 INFO mapreduce.Job: Counters: 35
    File System Counters
        FILE: Number of bytes read=37074
        FILE: Number of bytes written=805438
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=476788498
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=11
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=0
    Map-Reduce Framework
        Map input records=482230
        Map output records=0
        Map output bytes=0
        Map output materialized bytes=12
        Input split bytes=210
        Combine input records=0
        Combine output records=0
        Reduce input groups=0
        Reduce shuffle bytes=12
        Reduce input records=0
        Reduce output records=0
        Spilled Records=0
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=150
        Total committed heap usage (bytes)=1381498880
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters 
        Bytes Read=171283337
    File Output Format Counters 
        Bytes Written=0

为了回答我自己的问题,问题是导致匹配器失败的空白。单元测试没有使用领先的空白进行测试,但由于某种原因,实际日志中有这些空白。上面发布的代码的另一个问题是,类中的所有字段都是在readLine方法中初始化的。正如@AnonyMousse所提到的,这是昂贵的,因为Hadoop数据类型被设计为可重用的。它还导致了序列化和反序列化方面更大的问题。当Hadoop试图通过调用readFields来重构类时,由于所有字段都为null,因此导致了NPE。我还使用一些Java8类和语法进行了其他一些小的改进。最后,尽管我成功了,但我还是使用Spring Boot、Spring Data JPA以及Spring对使用@Async进行异步处理的支持重写了代码。

相关内容

  • 没有找到相关文章

最新更新