使用Spark GroupBy聚集体找到最常见的价值和相应的计数



我正在尝试使用SPARK(Scala)数据框来进行模式和相应计数的组汇总。

例如,

假设我们有以下数据框:

Category   Color   Number   Letter      
1        Red         4        A
1        Yellow      Null     B
3        Green       8        C
2        Blue        Null     A
1        Green       9        A
3        Green       8        B
3        Yellow      Null     C
2        Blue        9        B
3        Blue        8        B
1        Blue        Null     Null
1        Red         7        C
2        Green       Null     C
1        Yellow      7        Null
3        Red         Null     B

现在,我们要按类别进行分组,然后进行彩色,然后找到分组的大小,数字数量计数,数字总数,数字的平均值,数字模式和相应模式数数。对于字母,我想要非编号的计数以及相应的模式和模式计数(这不是平均值,因为这是字符串)。

,理想情况下的输出将是:

Category     Color     CountNumber(Non-Nulls)   Size   MeanNumber  ModeNumber ModeCountNumber   CountLetter(Non-Nulls)  ModeLetter   ModeCountLetter
1            Red       2                        2      5.5         4 (or 7) 
1            Yellow    1                        2      7           7     
1            Green     1                        1      9           9       
1            Blue      1                        1      -           -       
2            Blue      1                        2      9           9      etc 
2            Green     -                        1      -           -       
3            Green     2                        2      8           8       
3            Yellow    -                        1      -           -       
3            Blue      1                        1      8           8       
3            Red       -                        1      -           -       

这对于计数很容易做到,但对于其他所有事物来说都是更棘手的。任何建议将不胜感激。

谢谢。

据我所知,

没有简单的方法来计算模式 - 您必须计算每个值的出现,然后将结果与该结果的最大值(每个键)一起加入。其余的计算相当简单:

// count occurrences of each number in its category and color
val numberCounts = df.groupBy("Category", "Color", "Number").count().cache()
// compute modes for Number - joining counts with the maximum count per category and color:
val modeNumbers = numberCounts.as("base").join(numberCounts.groupBy("Category", "Color").agg(max("count") as "_max").as("max"),
  $"base.Category" === $"max.Category" and
  $"base.Color" === $"max.Color" and
  $"base.count" === $"max._max")
  .select($"base.Category", $"base.Color", $"base.Number", $"_max")
  .groupBy("Category", "Color")
  .agg(first($"Number", ignoreNulls = true) as "ModeNumber", first("_max") as "ModeCountNumber")
  .where($"ModeNumber".isNotNull)
// now compute Size, Count and Mean (simple) and join to add Mode:
val result = df.groupBy("Category", "Color").agg(
  count("Color") as "Size", // counting a key column -> includes nulls
  count("Number") as "CountNumber", // does not include nulls
  mean("Number") as "MeanNumber"
).join(modeNumbers, Seq("Category", "Color"), "left")
result.show()
// +--------+------+----+-----------+----------+----------+---------------+
// |Category| Color|Size|CountNumber|MeanNumber|ModeNumber|ModeCountNumber|
// +--------+------+----+-----------+----------+----------+---------------+
// |       3|Yellow|   1|          0|      null|      null|           null|
// |       1| Green|   1|          1|       9.0|         9|              1|
// |       1|   Red|   2|          2|       5.5|         7|              1|
// |       2| Green|   1|          0|      null|      null|           null|
// |       3|  Blue|   1|          1|       8.0|         8|              1|
// |       1|Yellow|   2|          1|       7.0|         7|              1|
// |       2|  Blue|   2|          1|       9.0|         9|              1|
// |       3| Green|   2|          2|       8.0|         8|              2|
// |       1|  Blue|   1|          0|      null|      null|           null|
// |       3|   Red|   1|          0|      null|      null|           null|
// +--------+------+----+-----------+----------+----------+---------------+

您可以想象 - 这可能很慢,因为它具有4 groupBy s和两个join s-都需要洗牌...

至于Letter列统计 - 恐怕您必须分别重复该列并添加另一个加入。

相关内容

  • 没有找到相关文章

最新更新