如何将这个东西从多线程转换为多处理?使用多线程时,它实际上运行得更慢,而没有使用太多的CPU。因此,我希望多处理可能会有所帮助。
def multiprocess(sentences):
responselist = []
#called by each thread
def processfunction(asentence,i):
pro_sentence = processthesentence(asentence[0],asentence[1],asentence[2],asentence[3],asentence[4],asentence[5],asentence[6],asentence[7],asentence[8])
mytyple = asentence,pro_sentence
responselist.append(mytyple)
# ----- function end --------- #
#start threading1
threadlist = []
for i in range (2):
asentence = sentences[i]
t = Thread(target=processfunction, args=(asentence,i,))
threadlist.append(t)
t.start()
for thr in threadlist:
thr.join()
return responselist
我试过这个(用进程替换一个词-线程,但这不起作用):
from multiprocessing import Process
def processthesentence(asentence):
return asentence + " done"
def multiprocess(sentences):
responselist = []
#called by each thread
def processfunction(asentence,i):
pro_sentence = processthesentence(asentence)
mytyple = asentence,pro_sentence
responselist.append(mytyple)
# ----- function end --------- #
#start threading1
threadlist = []
for i in range (2):
asentence = sentences[i]
t = Process(target=processfunction, args=(asentence,i,))
threadlist.append(t)
t.start()
for thr in threadlist:
thr.join()
return responselist
sentences = []
sentences.append("I like apples.")
sentences.append("Green apples are bad.")
multiprocess(sentences)
尝试使用greenevent,但出现一些错误:
import greenlet
import gevent
def dotheprocess(sentences):
responselist = []
#called by each thread
def task(asentence):
thesentence = processsentence(asentence[0],asentence[1],asentence[2],asentence[3],asentence[4],asentence[5],asentence[6],asentence[7],asentence[8])
mytyple = asentence,thesentence
responselist.append(mytyple)
# ----- function end --------- #
def asynchronous():
threads = [gevent.spawn(task, asentence) for asentence in sentences]
gevent.joinall(threads)
asynchronous()
return responselist
尝试使用gevent来生成多个greenlet,这将允许您使用其他CPU。这是你的一个例子。确保Queue能够在gevent
的上下文切换中正常工作。<>之前导入一种绿色小鸟进口gevent从event导入monkeymonkey.patch_all ()def dotheprocess(句子):queue = gevent.queue.Queue()由每个线程调用def任务(asentence):句子= processsentence(句子[0],句子[1],句子[2],句子[3],句子[4],句子[5],句子[6],句子[7],句子[8])queue.put ((asentence thesentence))线程= [gevent.]为句子中的句子生成(任务,句子)]gevent.joinall(线程)返回队列#用句子调用dotheprocess函数线程不会使函数更快,除非在线程中有一些等待函数(I/O实现)。多处理在理论上会有帮助,但是简单的函数不会从中受益太多,因为开销很大,所以要小心使用它。使用Manager
作为共享变量
from multiprocessing import Process, Manager, freeze_support
class multiProcess():
def __init__(self, sentences):
self.responseList = Manager().list()
self.processList = []
self.sentences = sentences
def processSentence(self,a0,a1,a2,a3,a4,a5,a6,a7,a8):
reversedValue = a8+a7+a6+a5+a4+a3+a2+a1+a0
return reversedValue
#called by each process
def processFunction(self,asentence):
pro_sentence = self.processSentence(asentence[0],asentence[1],asentence[2],asentence[3],asentence[4],asentence[5],asentence[6],asentence[7],asentence[8])
mytuple = (asentence,pro_sentence)
self.responseList.append(mytuple)
return
def run(self):
for i in range(2):
asentence = self.sentences[i]
p = Process(target=self.processFunction, args=(asentence,))
self.processList.append(p)
p.start()
for pro in self.processList:
pro.join()
return self.responseList
if __name__=="__main__":
freeze_support()
sentences = ['interesting','wonderful']
output = multiProcess(sentences).run()
print(output)
这对我来说是最有效的-它比不使用它快50%左右:
def processthesentence(asentence):
return asentence
import multiprocessing as mympro
if __name__=="__main__":
sentences = ['I like something','Great cool']
numberofprocesses = 3
thepool = mympro.Pool(processes=numberofprocesses)
results = [thepool.apply_async(processthesentence, args=(asent,)) for asent in sentences]
output = [item.get() for item in results]