因此,使用多处理模块,很容易与这样的不同参数并行运行一个函数:
from multiprocessing import Pool
def f(x):
return x**2
p = Pool(2)
print(p.map(f, [1, 2]))
,但我有兴趣在同一参数上执行函数列表。假设我有以下两个功能:
def f(x):
return x**2
def g(x):
return x**3 + 2
如何并行执行相同参数(例如x = 1(?
您可以使用Pool.apply_async()
。您以(函数,gright_tuple(的形式捆绑任务,然后将每个任务馈送到 apply_async()
。
from multiprocessing import Pool
from itertools import repeat
def f(x):
for _ in range(int(50e6)): # dummy computation
pass
return x ** 2
def g(x):
for _ in range(int(50e6)): # dummy computation
pass
return x ** 3
def parallelize(n_workers, functions, arguments):
# if you need this multiple times, instantiate the pool outside and
# pass it in as dependency to spare recreation all over again
with Pool(n_workers) as pool:
tasks = zip(functions, repeat(arguments))
futures = [pool.apply_async(*t) for t in tasks]
results = [fut.get() for fut in futures]
return results
if __name__ == '__main__':
N_WORKERS = 2
functions = f, g
results = parallelize(N_WORKERS, functions, arguments=(10,))
print(results)
示例输出:
[100, 1000]
Process finished with exit code 0
您可以返回元组。使用轻量级模块:Joblib可以很容易地以非常紧凑的方式进行操作。我推荐琼布利布,因为它是轻量级
from joblib import Parallel, delayed
import multiprocessing
import timeit
# Implementation 1
def f(x):
return x**2, x**3 + 2
#Implementation 2 for a more sophisticated second or more functions
def g(x):
return x**3 + 2
def f(x):
return x**2, g(x)
if __name__ == "__main__":
inputs = [i for i in range(32)]
num_cores = multiprocessing.cpu_count()
t1 = timeit.Timer()
result = Parallel(n_jobs=num_cores)(delayed(f)(i) for i in inputs)
print(t1.timeit(1))
与您在问题中已经有过的多处理。
from multiprocessing import Pool, cpu_count
import timeit
def g(x):
return x**3 + 2
def f(x):
return x**2, g(x)
if __name__ == "__main__":
inputs = [i for i in range(32)]
num_cores = cpu_count()
p = Pool(num_cores)
t1 = timeit.Timer()
result = p.map(f, inputs)
print(t1.timeit(1))
print(result)
示例输出:
print(result)
[(0, 2), (1, 3), (4, 10), (9, 29), (16, 66), (25, 127), (36, 218), (49, 345),
(64, 514), (81, 731), (100, 1002), (121, 1333), (144, 1730), (169, 2199),
(196, 2746), (225, 3377), (256, 4098), (289, 4915), (324, 5834), (361, 6861),
(400, 8002), (441, 9263), (484, 10650), (529, 12169), (576, 13826), (625,
15627), (676, 17578), (729, 19685), (784, 21954), (841, 24391), (900, 27002),
(961, 29793)]
print(t1.timeit(1))
5.000001692678779e-07 #(with 16 cpus and 64 Gb RAM)
for:inputs = range(2000(,花了时间:1.100000190490391E-06