如何将相同的列值与spark中的逗号分隔符连接到新列



输入数据的格式如下:

+--------------------+-------------+--------------------+
|           date     |       user  |           product  |
+--------------------+-------------+--------------------+
|        2016-10-01  |        Tom  |           computer |
+--------------------+-------------+--------------------+
|        2016-10-01  |        Tom  |           iphone   |
+--------------------+-------------+--------------------+
|        2016-10-01  |       Jhon  |             book   |
+--------------------+-------------+--------------------+
|        2016-10-02  |        Tom  |             pen    |
+--------------------+-------------+--------------------+
|        2016-10-02  |       Jhon  |             milk   |
+--------------------+-------------+--------------------+

,输出格式如下:

+-----------+-----------------------+
|     user  |        products       |
+-----------------------------------+
|     Tom   |   computer,iphone,pen |
+-----------------------------------+
|     Jhon  |          book,milk    |  
+-----------------------------------+

输出显示每个用户按订单日期购买的所有产品。

我想用Spark处理这些数据,你能帮我吗?谢谢你。

最好使用map-reduceBykey()组合而不是groupBy..假设数据中没有

#Read the data using val ordersRDD = sc.textFile("/file/path")
val ordersRDD = sc.parallelize( List(("2016-10-01","Tom","computer"), 
    ("2016-10-01","Tom","iphone"), 
    ("2016-10-01","Jhon","book"), 
    ("2016-10-02","Tom","pen"), 
    ("2016-10-02","Jhon","milk")))
#group by (date, user), sort by key & reduce by user & concatenate products
val dtusrGrpRDD = ordersRDD.map(rec => ((rec._2, rec._1), rec._3))
   .sortByKey().map(x=>(x._1._1, x._2))
   .reduceByKey((acc, v) => acc+","+v)
#if needed, make it to DF
scala> dtusrGrpRDD.toDF("user", "product").show()
+----+-------------------+
|user|            product|
+----+-------------------+
| Tom|computer,iphone,pen|
|Jhon|          book,milk|
+----+-------------------+

如果您正在使用HiveContext(您应该使用):

使用python的例子:
from pyspark.sql.functions import collect_set
df = ... load your df ...
new_df = df.groupBy("user").agg(collect_set("product").alias("products"))

如果你不想在产品中删除结果列表,你可以使用collect_list。

对于数据帧,它是两行:

import org.apache.spark.sql.functions.collect_list
//collect_set nistead of collect_list if you don't want duplicates
val output =  join.groupBy("user").agg(collect_list($"product"))

GroupBy将给你一个分组的用户集post,你可以在分组的数据集上迭代和collect_list或collect_set。

相关内容

  • 没有找到相关文章

最新更新