我有一些代码,使用Flann匹配器和ORB检测器来查找一个人的两张图像之间的特征。我在ubuntu上使用opencv 3。我有一些疑问……代码如下:
#include <iostream>
#include </home/sruthi/opencv/include/opencv2/opencv.hpp>
using namespace cv;
//void readme();
/** @function main */
int main(int argc, char** argv)
{
if( argc != 3 )
{ //readme();
return -1; }
Mat img_object = imread( argv[1], IMREAD_GRAYSCALE );
Mat img_scene = imread( argv[2], IMREAD_GRAYSCALE );
if (!img_object.data || !img_scene.data)
{
std::cout << " --(!) Error reading images " << std::endl; return -1;
}
//-- Step 1: Detect the keypoints using ORB Detector
Ptr<FeatureDetector> detector = ORB::create();
std::vector<KeyPoint> keypoints_object, keypoints_scene;
detector->detect(img_object, keypoints_object);
detector->detect(img_scene, keypoints_scene);
//-- Step 2: Calculate descriptors (feature vectors)
Ptr<DescriptorExtractor> extractor = ORB::create();
Mat descriptors_object, descriptors_scene;
extractor->compute(img_object, keypoints_object, descriptors_object);
extractor->compute(img_scene, keypoints_scene, descriptors_scene);
descriptors_object.convertTo(descriptors_object,CV_32F);
descriptors_scene.convertTo(descriptors_scene,CV_32F);
//-- Step 3: Matching descriptor vectors using FLANN matcher
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("FlannBased");
std::vector< DMatch > matches;
matcher->match(descriptors_object, descriptors_scene, matches);
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows; i++)
{
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
printf("-- Max dist : %f n", max_dist);
printf("-- Min dist : %f n", min_dist);
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for (int i = 0; i < descriptors_object.rows; i++)
{
if (matches[i].distance < 3 * min_dist)
{
good_matches.push_back(matches[i]);
}
}
Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for (int i = 0; i < good_matches.size(); i++)
{
//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);
}
//-- Show detected matches
imshow( "Good Matches", img_matches );
for( int i = 0; i < (int)good_matches.size(); i++ )
{ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }
waitKey(0);
return 0;
}
double max_dist = 0;Double min_dist = 100;为什么我们分别将这些距离声明为0和100 ?作为输出我得到最大距离:488.559113最小距离:100.000000。
如果(匹配[我]。距离& lt;3 * min_dist){good_matches.push_back(匹配[我]);}为什么我不能把3*min_dist改成2*min_dist?
是否必须有官方文档中所示的平行线?不会得到平行线。我不能发截图
- 这些初始化似乎是针对编写此代码的特定情况进行调整的。
- 这也是由于调优的参数。尝试不同的图像集,你应该会看到一些变化的结果。另外,另一个好的做法是使用次优距离来寻找好的匹配。
- 正确的匹配应该是平行线,因为两幅图像中匹配的相对位置应该保持不变。任何交叉行都是不正确的匹配。