我试图基于多处理池编写装饰,但它不起作用,无法捕获异常,请显示我的代码:
def handle_request(response):
print str(response)
def run_in_process(process_num):
def _run_in_process(f):
def __run_in_process(*args, **kwargs):
pool = multiprocessing.Pool(processes=process_num)
for i in range(process_num):
pool.apply_async(f, args=args, kwds=kwargs, callback=kwargs.get("callback"))
pool.close()
pool.join()
return __run_in_process
return _run_in_process
@run_in_process(process_num)
def main():
http_client = AsyncHTTPClient()
http_client.fetch(url, callback=handle_request)
global loop
loop = tornado.ioloop.IOLoop.instance()
if loop._running is False:
loop.start()
if __name__ == '__main__':
main()
显示我的日志:
/usr/bin/python2.7 /home/workspace/py_project/crawler/center/sample.py
Process finished with exit code 0
但是,当我改变自己的方式时,当我使用多处理时,它效果很好,就像:
def handle_request(response):
print str(response)
def run_in_process(process_num):
def _run_in_process(f):
def __run_in_process(*args, **kwargs):
_processes = []
for i in xrange(process_num):
p = multiprocessing.Process(target=f, args=args, kwargs=kwargs)
p.start()
_processes.append(p)
for p in _processes:
p.join()
return __run_in_process
return _run_in_process
@run_in_process(process_num)
def main():
http_client = AsyncHTTPClient()
http_client.fetch(url, callback=handle_request)
global loop
loop = tornado.ioloop.IOLoop.instance()
if loop._running is False:
loop.start()
if __name__ == '__main__':
main()
显示我的日志:
/usr/bin/python2.7 /home/workspace/py_project/crawler/center/sample.py
HTTPResponse(_body=None,buffer=<_io.BytesIO object at 0x7f2fdaa21ef0>,code=200,effective_url='http://www.baidu.com',error=None,headers=<tornado.httputil.HTTPHeaders object at 0x7f2fdaa425d0>,reason='OK',request=<tornado.httpclient.HTTPRequest object at 0x7f2fdaa42250>,request_time=0.014312028884887695,time_info={})
HTTPResponse(_body=None,buffer=<_io.BytesIO object at 0x7f2fdaa21ef0>,code=200,effective_url='http://www.baidu.com',error=None,headers=<tornado.httputil.HTTPHeaders object at 0x7f2fdaa43450>,reason='OK',request=<tornado.httpclient.HTTPRequest object at 0x7f2fdaa430d0>,request_time=0.02327895164489746,time_info={})
HTTPResponse(_body=None,buffer=<_io.BytesIO object at 0x7f2fdaa21ef0>,code=200,effective_url='http://www.baidu.com',error=None,headers=<tornado.httputil.HTTPHeaders object at 0x7f2fdaa43510>,reason='OK',request=<tornado.httpclient.HTTPRequest object at 0x7f2fdaa43190>,request_time=0.026951074600219727,time_info={})
HTTPResponse(_body=None,buffer=<_io.BytesIO object at 0x7f2fdaa21ef0>,code=200,effective_url='http://www.baidu.com',error=None,headers=<tornado.httputil.HTTPHeaders object at 0x7f2fdaa42690>,reason='OK',request=<tornado.httpclient.HTTPRequest object at 0x7f2fdaa42310>,request_time=0.0552978515625,time_info={})
HTTPResponse(_body=None,buffer=<_io.BytesIO object at 0x7f2fdaa24ef0>,code=200,effective_url='http://www.baidu.com',error=None,headers=<tornado.httputil.HTTPHeaders object at 0x7f2fdaa39e10>,reason='OK',request=<tornado.httpclient.HTTPRequest object at 0x7f2fdaa39a90>,request_time=0.05612993240356445,time_info={})
我不明白发生了什么,而Gevent也发生了同样的事情。任何人都请我。
如果计划函数提出异常,则Python 2.7中的multiprocessing.Pool
不会运行回调。这是在python 3中修复的,添加了error_callback
。
我建议您按以下方式修改内部循环以实际查看错误:
results = []
pool = multiprocessing.Pool(processes=process_num)
for i in range(process_num):
result = pool.apply_async(f, args=args, kwds=kwargs, callback=kwargs.get("callback"))
results.append(result)
for result in results:
result.get() # this will raise the exception in the worker
pool.close()
pool.join()