我使用Autokeras来训练我的模型,然后fit_final我将其保存为纯keras h5文件。
我的模型:
from autokeras import ImageClassifier
from autokeras.image.image_supervised import load_image_dataset
if __name__ == '__main__':
x_test, y_test = load_image_dataset(csv_file_path="test/label.csv", images_path="test")
print(x_test.shape)
print(y_test.shape)
x_train, y_train = load_image_dataset(csv_file_path="train/label.csv", images_path="train")
print(x_train.shape)
print(y_train.shape)
clf = ImageClassifier(path="~/automodels/", verbose=True)
clf.fit(x_train, y_train, time_limit= 1 * 10 * 60)
clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
y = clf.evaluate(x_test, y_test)
print(y)
clf.export_autokeras_model('my_autokeras_model.h5ak')
clf.export_keras_model('my_model.h5')
我也有 predict.py 代码,但它给了我错误的值
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
import glob
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import confusion_matrix
# dimensions of our images
img_width, img_height = 128, 128
# load the model we saved
model = load_model('model.h5')
#model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
datagen = ImageDataGenerator(rescale=1./255)
generator = datagen.flow_from_directory(
'data/test',
target_size=(img_width, img_height),
batch_size=1,
class_mode=None, # only data, no labels
shuffle=False) # keep data in same order as labels
#filenames = datagen.filenames
#nb_samples = len(filenames)
probabilities = model.predict_generator(generator, 4)
实际结果:
[[-2.0996048 1.862035 ]
[-1.4634153 1.2710633]
[-1.4367918 1.4041075]
[-1.3242773 1.2946494]]
预期结果应如下所示:
[[0 0.51234 ]
[1 0.67847]
[1 0.92324]
[1 0.32333]]
例如。
我做错了什么?
在米奇向我建议激活功能后,我在 github 上找到了这个线程
这里这个线程帮助我弄清楚了这些代码行:
keras_model = load_model('model.h5')
x = keras_model.output
x = Activation('softmax', name='activation_add')(x)
new_model = Model(keras_model.input, x)