多处理子进程中的无序



在使用主持人脚本(参见下文(调用执行计算的内部脚本以线性方式很好地运行一些计算后,我挣扎着在尝试使用多处理时将其执行。 似乎每个 CPU 内核都在通过此列表集 (testRegister( 运行并启动计算,即使另一个内核之前已经执行了此任务(在同一会话中(。 如何防止这种混乱行为? 这是我第一次尝试通过Python调用多个处理器。

更正:最初的帖子没有显示测试是一个字符串,包括调用"内部脚本",其中包含不同的参数 m1 和 m2,以及仅属于此"内部脚本"的固定参数 arg1 和 arg2。

#!/usr/bin/env python3
import os
import subprocess as sub
import sys
import multiprocessing
fileRegister = []
testRegister = []

def fileCollector():
    for file in os.listdir("."):
        if file.endswith(".xyz"):
            fileRegister.append(file)
    fileRegister.sort()
    return fileRegister

def testSetup():
    data = fileRegister
    while len(data) > 1:
        for entry in fileRegister[1:]:
            m0 = str(fileRegister[0])
            m1 = str(entry)
            test =  str("python foo.py ") + str(m1) + str(" ") + str(m2) +
                    str(" --arg1 --arg2")  # formulate test condition
            testRegister.append(test)
            testRegister.sort()
        del data[0]
    return testRegister

def shortAnalysator():
    for entry in testRegister:
        print(str(entry))
        sub.call(entry, shell=True)
        del testRegister[0]

def polyAnalysator():
    # apparently each CPU core works as if the register were not shared
    # reference: https://docs.python.org/3.7/library/multiprocessing.html
    if __name__ == '__main__':
        jobs = []
        for i in range(3):   # safety marging to not consume all CPU
            p = multiprocessing.Process(target=shortAnalysator)
            jobs.append(p)
            p.start()

fileCollector()
testSetup()
shortAnalysator()       # proceeding expectably on one CPU (slow)
# polyAnalysator()        # causing irritation
sys.exit()```

您的polyAnalysator运行了三次shortAnalysator。尝试按如下方式更改polyAnalysator,并添加f方法。这将使用multiprocessing Pool

from multiprocessing import Pool
def f(test):
    sub.call(test, shell=True)

def polyAnalysator():
    # apparently each CPU core works as if the register were not shared
    # reference: https://docs.python.org/3.7/library/multiprocessing.html
    with Pool(3) as p:
        p.map(f, testRegister)

相关内容

  • 没有找到相关文章

最新更新