对于相同的数据集和参数,即使scikit-learn
内部也使用LibSVM
,我也可以得到LibSVM
和scikit-learn
的SVM实现的不同精度。
我忽略了什么?
LibSVM命令行版本:
me@my-compyter:~/Libraries/libsvm-3.16$ ./svm-train -c 1 -g 0.07 heart_scale heart_scale.model
optimization finished, #iter = 134
nu = 0.433785
obj = -101.855060, rho = 0.426412
nSV = 130, nBSV = 107
Total nSV = 130
me@my-compyter:~/Libraries/libsvm-3.16$ ./svm-predict heart_scale heart_scale.model heart_scale.result
Accuracy = 86.6667% (234/270) (classification)
Scikit-learn NuSVC版本:
In [1]: from sklearn.datasets import load_svmlight_file
In [2]: X_train, y_train = load_svmlight_file('heart_scale')
In [3]: from sklearn import svm
In [4]: clf = svm.NuSVC(gamma=0.07,verbose=True)
In [5]: clf.fit(X_train,y_train)
[LibSVM]*
optimization finished, #iter = 118
C = 0.479830
obj = 9.722436, rho = -0.224096
nSV = 145, nBSV = 125
Total nSV = 145
Out[5]: NuSVC(cache_size=200, coef0=0.0, degree=3, gamma=0.07, kernel='rbf',
max_iter=-1, nu=0.5, probability=False, shrinking=True, tol=0.001,
verbose=True)
In [6]: pred = clf.predict(X_train)
In [7]: from sklearn.metrics import accuracy_score
In [8]: accuracy_score(y_train, pred)
Out[8]: 0.8481481481481481
Scikit-learn SVC version:
In [1]: from sklearn.datasets import load_svmlight_file
In [2]: X_train, y_train = load_svmlight_file('heart_scale')
In [3]: from sklearn import svm
In [4]: clf = svm.SVC(gamma=0.07,C=1, verbose=True)
In [5]: clf.fit(X_train,y_train)
[LibSVM]*
optimization finished, #iter = 153
obj = -101.855059, rho = -0.426465
nSV = 130, nBSV = 107
Total nSV = 130
Out[5]: SVC(C=1, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.07,
kernel='rbf', max_iter=-1, probability=False, shrinking=True, tol=0.001,
verbose=True)
In [6]: pred = clf.predict(X_train)
In [7]: from sklearn.metrics import accuracy_score
In [8]: accuracy_score(y_train, pred)
Out[8]: 0.8666666666666667
更新Update1:将scikit-learn示例从SVR更新为NuSVC,参见ogrisel的回答
Update2: add output for verbose=True
Update3:添加scikit-learn SVC版本
看来我的问题解决了。如果我使用SVC与C=1
,而不是NuSVC,我得到相同的结果作为libsvm,但有人能解释为什么NuSVC和SVC(C=1)给出不同的结果,即使,他们应该做同样的(见ogrisel的答案)?
SVR
是回归模型,而不是分类模型。svm-train -c 1
是Nu-SVC模型,可以作为sklearn.svm.NuSVC
类使用。