AVX2 根据条件将连续元素扩展到稀疏向量?(如AVX512 VP扩展)



>有谁知道如何矢量化以下代码?

uint32_t r[8];
uint16_t* ptr;
for (int j = 0; j < 8; ++j)
if (r[j] < C)
r[j] = *(ptr++);

这基本上是一个蒙面收集操作。自动矢量化器无法处理此问题。如果 ptr 是一个uint32_t*,它应该可以通过_mm256_mask_i32gather_epi32直接实现。但即便如此,如何生成正确的索引向量?无论如何,只使用打包负载并洗牌结果(需要类似的索引向量)不是更快吗?

更新的答案:主要代码段已被重写为函数和解决方案 添加了适用于 AMD 处理器。

正如Peter Cordes在评论中提到的,AVX-512指令vpexpandd在这里会很有用。 功能_mm256_mask_expand_epi32_AVX2_BMI()_mm256_mask_expand_epi32_AVX2()如下更多 或较少模拟此指令。AVX2_BMI 变体适用于英特尔 Haswell 处理器及更新版本。_mm256_mask_expand_epi32_AVX2()功能适用于速度较慢或 缺乏pdep指令,例如锐龙处理器。 在这个函数中,一些具有高吞吐量的指令, 例如移位和简单的算术运算,而不是pdep指令。 AMD处理器的另一种可能性是 一次只处理 4 个元素,并使用一个小(16 个元素)查找表来检索 shuf_mask。

在这两个函数下面显示了如何使用它们来矢量化标量代码

答案使用了与彼得·科德斯(Peter Cordes)的答案类似的想法, 其中讨论了基于掩码的左包装。在那个答案中,BMI2 指令pext用于计算排列向量。 在这里,我们改用pdep指令来计算排列向量。 函数_mm256_mask_expand_epi32_AVX2()查找排列向量 通过计算以不同的方式r<C掩码上的前缀总和。

由于无符号uint32_t,我使用保罗R的想法进行epu32无符号比较。

/*     gcc -O3 -m64 -Wall -mavx2 -march=broadwell mask_expand_avx.c     */
#include <immintrin.h>
#include <stdio.h>
#include <stdint.h>
__m256i _mm256_mask_expand_epi32_AVX2_BMI(__m256i src, __m256i mask, __m256i insert_vals, int* nonz){ 
/* Scatter the insert_vals to the positions indicated by mask.                                                                    */               
/* Blend the src with these scattered insert_vals.                                                                                */
/* Return also the number of nonzeros in mask (which is inexpensive here                                                          */
/* because _mm256_movemask_epi8(mask) has to be computed anyway.)                                                                          */
/* This code is suitable for Intel Haswell and newer processors.                                                                  */
/* This code is less suitble for AMD Ryzen processors, due to the                                                                 */
/* slow pdep instruction on those processors, see _mm256_mask_expand_epi32_AVX2                                                   */
uint32_t all_indx         = 0x76543210;
uint32_t mask_int32       = _mm256_movemask_epi8(mask);                           /* Packed mask of 8 nibbles                     */
uint32_t wanted_indx      = _pdep_u32(all_indx, mask_int32);                      /* Select the right nibbles from all_indx       */
uint64_t expand_indx      = _pdep_u64(wanted_indx, 0x0F0F0F0F0F0F0F0F);           /* Expand the nibbles to bytes                  */
__m128i  shuf_mask_8bit   = _mm_cvtsi64_si128(expand_indx);                       /* Move to AVX-128 register                     */
__m256i  shuf_mask        = _mm256_cvtepu8_epi32(shuf_mask_8bit);                 /* Expand bytes to 32-bit integers              */
__m256i  insert_vals_exp  = _mm256_permutevar8x32_epi32(insert_vals, shuf_mask);  /* Expand insert_vals to the right positions    */
__m256i  dst              = _mm256_blendv_epi8(src, insert_vals_exp, mask);       /* src is replaced by insert_vals_exp at the postions indicated by mask */
*nonz            = _mm_popcnt_u32(mask_int32) >> 2;
return dst;
}

__m256i _mm256_mask_expand_epi32_AVX2(__m256i src, __m256i mask, __m256i insert_vals, int* nonz){ 
/* Scatter the insert_vals to the positions indicated by mask.                                                                    */               
/* Blend the src with these scattered insert_vals.                                                                                */
/* Return also the number of nonzeros in mask.                                                                                    */
/* This code is an alternative for the _mm256_mask_expand_epi32_AVX2_BMI function.                                                */
/* In contrast to that code, this code doesn't use the BMI instruction pdep.                                                      */
/* Therefore, this code is suitable for AMD processors.                                                                            */
__m128i  mask_lo          = _mm256_castsi256_si128(mask);                      
__m128i  mask_hi          = _mm256_extracti128_si256(mask, 1);                  
__m128i  mask_hi_lo       = _mm_packs_epi32(mask_lo, mask_hi);                    /* Compressed 128-bits (8 x 16-bits) mask       */
*nonz            = _mm_popcnt_u32(_mm_movemask_epi8(mask_hi_lo)) >> 1;
__m128i  prefix_sum       = mask_hi_lo;
__m128i  prefix_sum_shft  = _mm_slli_si128(prefix_sum, 2);                        /* The permutation vector is based on the       */
prefix_sum       = _mm_add_epi16(prefix_sum, prefix_sum_shft);           /* Prefix sum of the mask.                      */
prefix_sum_shft  = _mm_slli_si128(prefix_sum, 4);
prefix_sum       = _mm_add_epi16(prefix_sum, prefix_sum_shft);
prefix_sum_shft  = _mm_slli_si128(prefix_sum, 8);
prefix_sum       = _mm_add_epi16(prefix_sum, prefix_sum_shft);
__m128i  shuf_mask_16bit  = _mm_sub_epi16(_mm_set1_epi16(-1), prefix_sum);
__m256i  shuf_mask        = _mm256_cvtepu16_epi32(shuf_mask_16bit);               /* Expand 16-bit integers to 32-bit integers    */
__m256i  insert_vals_exp  = _mm256_permutevar8x32_epi32(insert_vals, shuf_mask);  /* Expand insert_vals to the right positions    */
__m256i  dst              = _mm256_blendv_epi8(src, insert_vals_exp, mask);       /* src is replaced by insert_vals_exp at the postions indicated by mask */
return dst;
}

/* Unsigned integer compare _mm256_cmplt_epu32 doesn't exist                                                    */
/* The next two lines are based on Paul R's answer https://stackoverflow.com/a/32945715/2439725                 */
#define _mm256_cmpge_epu32(a, b) _mm256_cmpeq_epi32(_mm256_max_epu32(a, b), a)
#define _mm256_cmplt_epu32(a, b) _mm256_xor_si256(_mm256_cmpge_epu32(a, b), _mm256_set1_epi32(-1))
int print_input(uint32_t* r, uint32_t C, uint16_t* ptr);
int print_output(uint32_t* r, uint16_t* ptr);
int main(){
int       nonz;
uint32_t  r[8]        = {6, 3, 1001, 2, 1002, 7, 5, 1003};
uint32_t  r_new[8];
uint32_t  C           = 9;
uint16_t* ptr         = malloc(8*2);  /* allocate 16 bytes for 8 uint16_t's */
ptr[0] = 11; ptr[1] = 12; ptr[2] = 13;ptr[3] = 14; ptr[4] = 15; ptr[5] = 16; ptr[6] = 17; ptr[7] = 18;
uint16_t* ptr_new;
printf("Test values:n");
print_input(r,C,ptr);
__m256i   src         = _mm256_loadu_si256((__m256i *)r);
__m128i   ins         = _mm_loadu_si128((__m128i *)ptr);
__m256i   insert_vals = _mm256_cvtepu16_epi32(ins);
__m256i   mask_C      = _mm256_cmplt_epu32(src,_mm256_set1_epi32(C));   

printf("Output _mm256_mask_expand_epi32_AVX2_BMI:n");
__m256i   output      = _mm256_mask_expand_epi32_AVX2_BMI(src, mask_C, insert_vals, &nonz);
_mm256_storeu_si256((__m256i *)r_new,output);
ptr_new     = ptr + nonz;
print_output(r_new,ptr_new);              

printf("Output _mm256_mask_expand_epi32_AVX2:n");
output      = _mm256_mask_expand_epi32_AVX2(src, mask_C, insert_vals, &nonz);
_mm256_storeu_si256((__m256i *)r_new,output);
ptr_new     = ptr + nonz;
print_output(r_new,ptr_new);              

printf("Output scalar loop:n");
for (int j = 0; j < 8; ++j)
if (r[j] < C)
r[j] = *(ptr++);
print_output(r,ptr);              
return 0;
}
int print_input(uint32_t* r, uint32_t C, uint16_t* ptr){
printf("r[0]..r[7]        =     %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u  n",r[0],r[1],r[2],r[3],r[4],r[5],r[6],r[7]);
printf("Threshold value C =     %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u  n",C,C,C,C,C,C,C,C);
printf("ptr[0]..ptr[7]    =     %4hu  %4hu  %4hu  %4hu  %4hu  %4hu  %4hu  %4hu  nn",ptr[0],ptr[1],ptr[2],ptr[3],ptr[4],ptr[5],ptr[6],ptr[7]);
return 0;
}
int print_output(uint32_t* r, uint16_t* ptr){
printf("r[0]..r[7]        =     %4u  %4u  %4u  %4u  %4u  %4u  %4u  %4u  n",r[0],r[1],r[2],r[3],r[4],r[5],r[6],r[7]);
printf("ptr               = %p nn",ptr);
return 0;
}

输出为:

$ ./a.out
Test values:
r[0]..r[7]        =        6     3  1001     2  1002     7     5  1003  
Threshold value C =        9     9     9     9     9     9     9     9  
ptr[0]..ptr[7]    =       11    12    13    14    15    16    17    18  
Output _mm256_mask_expand_epi32_AVX2_BMI:
r[0]..r[7]        =       11    12  1001    13  1002    14    15  1003  
ptr               = 0x92c01a 
Output _mm256_mask_expand_epi32_AVX2:
r[0]..r[7]        =       11    12  1001    13  1002    14    15  1003  
ptr               = 0x92c01a 
Output scalar loop:
r[0]..r[7]        =       11    12  1001    13  1002    14    15  1003  
ptr               = 0x92c01a 

最新更新