我有一个使用模式的文档集合,像这样(一些成员编校):
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : [
2,
3,
5
],
"activity" : [
4,
4,
3
],
},
"media" : [
ObjectId("537ea185df872bb71e4df270"),
ObjectId("537ea185df872bb71e4df275"),
ObjectId("537ea185df872bb71e4df272")
]
}
在此模式中,第一、第二和第三个positivity
评级分别对应于media
数组中的第一、第二和第三个条目。activity
评级也是如此。我需要计算关于集合中所有文档中相关media
对象的positivity
和activity
评级的统计信息。现在,我正在用MapReduce做这个。然而,我想用聚合管道来完成这个任务。
理想情况下,我希望同时对media
、answers.ratings.positivity
和answers.ratings.activity
数组进行$unwind
处理,这样我就可以根据前面的示例得到以下三个文档:
[
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : 2,
"activity" : 4
}
},
"media" : ObjectId("537ea185df872bb71e4df270")
},
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : 3
"activity" : 4
}
},
"media" : ObjectId("537ea185df872bb71e4df275")
},
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : 5
"activity" : 3
}
},
"media" : ObjectId("537ea185df872bb71e4df272")
}
]
有办法做到这一点吗?
当前的聚合框架不允许您这样做。能够展开已知大小相同的多个数组并为每个数组的第i个值创建文档将是一个很好的特性。
如果你想使用聚合框架,你需要稍微改变一下你的模式。以以下文档模式为例:
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : [
{k:1, v:2},
{k:2, v:3},
{k:3, v:5}
],
"activity" : [
{k:1, v:4},
{k:2, v:4},
{k:3, v:3}
],
}},
"media" : [
{k:1, v:ObjectId("537ea185df872bb71e4df270")},
{k:2, v:ObjectId("537ea185df872bb71e4df275")},
{k:3, v:ObjectId("537ea185df872bb71e4df272")}
]
}
这样做实际上是在给数组内的对象添加索引。在这之后,它只是展开所有数组和匹配键的问题。
db.test.aggregate([{$unwind:"$media"},
{$unwind:"$answers.ratings.positivity"},
{$unwind:"$answers.ratings.activity"},
{$project:{"media":1, "answers.ratings.positivity":1,"answers.ratings.activity":1,
include:{$and:[
{$eq:["$media.k", "$answers.ratings.positivity.k"]},
{$eq:["$media.k", "$answers.ratings.activity.k"]}
]}}
},
{$match:{include:true}}])
输出为:
[
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : {
"k" : 1,
"v" : 2
},
"activity" : {
"k" : 1,
"v" : 4
}
}
},
"media" : {
"k" : 1,
"v" : ObjectId("537ea185df872bb71e4df270")
},
"include" : true
},
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : {
"k" : 2,
"v" : 3
},
"activity" : {
"k" : 2,
"v" : 4
}
}
},
"media" : {
"k" : 2,
"v" : ObjectId("537ea185df872bb71e4df275")
},
"include" : true
},
{
"_id" : ObjectId("539f41a95d1887b57ab78bea"),
"answers" : {
"ratings" : {
"positivity" : {
"k" : 3,
"v" : 5
},
"activity" : {
"k" : 3,
"v" : 3
}
}
},
"media" : {
"k" : 3,
"v" : ObjectId("537ea185df872bb71e4df272")
},
"include" : true
}
]
这样做会产生大量额外的文档开销,并且可能比当前的MapReduce实现慢。您需要运行测试来检查这一点。为此所需的计算量将根据这三个数组的大小以三次方式增长。