我一直在尝试通过熊猫从雅虎财经导入数据,然后通过.as_matrix()将其转换为数组,然后当我将数据输入分类器进行训练时,它给了我一个错误。
ValueError: Found array with dim 4. Estimator expected <= 2.
这是我的代码:
from sklearn import tree
import pandas as pd
import pandas_datareader.data as web
df = web.DataReader('goog', 'yahoo', start='2012-5-1', end='2016-5-20')
close_price = df[['Close']]
ma_50 = (pd.rolling_mean(close_price, window=50))
ma_100 = (pd.rolling_mean(close_price, window=100))
ma_200 = (pd.rolling_mean(close_price, window=200))
#adding buys and sell based on the values
df['B/S']= (df['Close'].diff() < 0).astype(int)
close_buy = df[['Close']+['B/S']]
closing = df[['Close']].as_matrix()
buy_sell = df[['B/S']]
close_buy = pd.DataFrame.dropna(close_buy, 0, 'any')
ma_50 = pd.DataFrame.dropna(ma_50, 0, 'any')
ma_100 = pd.DataFrame.dropna(ma_100, 0, 'any')
ma_200 = pd.DataFrame.dropna(ma_200, 0, 'any')
close_buy = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_50 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_100 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_200 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
buy_sell = (df.loc['2013-02-15':'2016-05-21']).as_matrix
print(ma_100)
clf = tree.DecisionTreeClassifier()
x = [[close_buy,ma_50,ma_100,ma_200]]
y = [buy_sell]
clf.fit(x,y)
我发现了几个需要修复的错误/事情。
- 缺少的参数
buy_sell = (df.loc['2013-02-15':'2016-05-21']).as_matrix
-
[[close_buy,ma_50,ma_100,ma_200]]
是给你4个维度的东西。 相反,我会使用np.concatenate
它获取数组列表并将它们相互附加,无论是长度还是宽度。 参数axis=1
指定宽度。 这样做是x
一个 822 x 28 矩阵,其中包含 28 个特征的 822 个观测值。 如果这不是你想要的,那么显然我没有达到目标。 但这些尺寸与您的y
一致。
相反:
from sklearn import tree
import pandas as pd
import pandas_datareader.data as web
df = web.DataReader('goog', 'yahoo', start='2012-5-1', end='2016-5-20')
close_price = df[['Close']]
ma_50 = (pd.rolling_mean(close_price, window=50))
ma_100 = (pd.rolling_mean(close_price, window=100))
ma_200 = (pd.rolling_mean(close_price, window=200))
#adding buys and sell based on the values
df['B/S']= (df['Close'].diff() < 0).astype(int)
close_buy = df[['Close']+['B/S']]
closing = df[['Close']].as_matrix()
buy_sell = df[['B/S']]
close_buy = pd.DataFrame.dropna(close_buy, 0, 'any')
ma_50 = pd.DataFrame.dropna(ma_50, 0, 'any')
ma_100 = pd.DataFrame.dropna(ma_100, 0, 'any')
ma_200 = pd.DataFrame.dropna(ma_200, 0, 'any')
close_buy = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_50 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_100 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
ma_200 = (df.loc['2013-02-15':'2016-05-21']).as_matrix()
buy_sell = (df.loc['2013-02-15':'2016-05-21']).as_matrix() # Fixed
print(ma_100)
clf = tree.DecisionTreeClassifier()
x = np.concatenate([close_buy,ma_50,ma_100,ma_200], axis=1) # Fixed
y = buy_sell # Brackets not necessary... I don't think
clf.fit(x,y)
这为我运行:
DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,
max_features=None, max_leaf_nodes=None, min_samples_leaf=1,
min_samples_split=2, min_weight_fraction_leaf=0.0,
random_state=None, splitter='best')