python中的TMX(Translation Memory eXchange)文件



python中是否有处理TMX(Translation Memory eXchange)文件的模块,如果没有,还有什么其他方法?

目前,我有一个巨大的2gb文件,有法语和英语字幕。有可能处理这样一个文件吗?还是我必须把它分解?

正如@hurrial所说,您可以使用翻译工具包。

安装

此工具包只能使用pip。要安装它,请运行:

pip install translate-toolkit

用法

假设您有以下简单的sample.tmx文件:

<tmx version="1.4">
  <header
    creationtool="XYZTool" creationtoolversion="1.01-023"
    datatype="PlainText" segtype="sentence"
    adminlang="en-us" srclang="en"
    o-tmf="ABCTransMem"/>
  <body>
    <tu>
      <tuv xml:lang="en">
        <seg>Hello world!</seg>
      </tuv>
      <tuv xml:lang="ar">
        <seg>اهلا بالعالم!</seg>
      </tuv>
    </tu>
  </body>
</tmx>

你可以这样解析这个简单的文件:

>>> from translate.storage.tmx import tmxfile
>>>
>>> with open("sample.tmx", 'rb') as fin:
...     tmx_file = tmxfile(fin, 'en', 'ar')
>>>
>>> for node in tmx_file.unit_iter():
...     print(node.source, node.target)
Hello world! اهلا بالعالم!

有关更多信息,请查看此处的官方文档。

您可以查看以下链接:

  • 预传输:http://translate-toolkit.readthedocs.org/en/latest/commands/pretranslate.html
  • 翻译工具包:http://en.wikipedia.org/wiki/Translate_Toolkit
  • 翻译工具包包:https://pypi.python.org/pypi/translate-toolkit
  • 翻译API:https://github.com/translate/translate

干杯,

以下是一个可以轻松将TMX转换为pandas数据帧的脚本:

from collections import namedtuple
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
def tmx2df(tmxfile):
    # Pick your poison for parsing XML.
    with open(tmxfile) as fin:
        content = fin.read()
        bsoup = BeautifulSoup(content, 'lxml')    # Actual TMX extraction.
    lol = [] # Keep a list of the rows to populate.
    for tu in tqdm(bsoup.find_all('tu')):
        # Parse metadata from tu
        metadata = tu.attrs
        # Parse prop
        properties = {prop.attrs['type']:prop.text for prop in tu.find_all('prop')}
        # Parse seg
        segments = {}
        # The order of the langauges might not be consistent, 
        # so keep them in some dict and unstructured first.
        for tuv in tu.find_all('tuv'):
            segment = ' '.join([seg.text for seg in tuv.find_all('seg')])
            segments[tuv.attrs['xml:lang']] = segment
        lol.append({'metadata':metadata, 'properties':properties, 'segments':segments})    # Put the list of rows into a dataframe.
    df = pd.DataFrame(lol)    # See https://stackoverflow.com/a/38231651
    return pd.concat([df.drop(['segments'], axis=1), df['segments'].apply(pd.Series)], axis=1)

相关内容

  • 没有找到相关文章

最新更新