如何积累pool.apply_async调用的结果?



我想调用pool.apply_async(func(并在结果可用时立即累积结果,而无需相互等待。


import multiprocessing
import numpy as np
chrNames=['chr1','chr2','chr3']
sims=[1,2,3]

def accumulate_chrBased_simBased_result(chrBased_simBased_result,accumulatedSignalArray,accumulatedCountArray):
signalArray = chrBased_simBased_result[0]
countArray = chrBased_simBased_result[1]
accumulatedSignalArray += signalArray
accumulatedCountArray += countArray

def func(chrName,simNum):
print('%s %d' %(chrName,simNum))
result=[]
signal_array=np.full((10000,), simNum, dtype=float)
count_array = np.full((10000,), simNum, dtype=int)
result.append(signal_array)
result.append(count_array)
return result

if __name__ == '__main__':
accumulatedSignalArray = np.zeros((10000,), dtype=float)
accumulatedCountArray = np.zeros((10000,), dtype=int)
numofProcesses = multiprocessing.cpu_count()
pool = multiprocessing.Pool(numofProcesses)
for chrName in chrNames:
for simNum in sims:
result= pool.apply_async(func, (chrName,simNum,))
accumulate_chrBased_simBased_result(result.get(),accumulatedSignalArray,accumulatedCountArray)
pool.close()
pool.join()
print(accumulatedSignalArray)
print(accumulatedCountArray)

这样,每个pool.apply_async呼叫都会等待其他呼叫结束。 有没有办法摆脱这种等待对方?

您在每次迭代中使用result.get(),并使主进程等待函数准备就绪。

请在下面找到一个工作版本,其中的打印显示累积是在"func"准备就绪时完成的,并添加随机睡眠以确保相当大的执行时间差异。

import multiprocessing
import numpy as np
from time import time, sleep
from random import random
chrNames=['chr1','chr2','chr3']
sims=[1,2,3]

def accumulate_chrBased_simBased_result(chrBased_simBased_result,accumulatedSignalArray,accumulatedCountArray):    
signalArray = chrBased_simBased_result[0]
countArray = chrBased_simBased_result[1]
accumulatedSignalArray += signalArray
accumulatedCountArray += countArray

def func(chrName,simNum):
result=[]
sleep(random()*5)
signal_array=np.full((10000,), simNum, dtype=float)
count_array = np.full((10000,), simNum, dtype=int)
result.append(signal_array)
result.append(count_array)
print('%s %d' %(chrName,simNum))
return result

if __name__ == '__main__':
accumulatedSignalArray = np.zeros((10000,), dtype=float)
accumulatedCountArray = np.zeros((10000,), dtype=int)
numofProcesses = multiprocessing.cpu_count()
pool = multiprocessing.Pool(numofProcesses)
results = []
for chrName in chrNames:
for simNum in sims:
results.append(pool.apply_async(func, (chrName,simNum,)))
for i in results:
print(i)
while results:
for r in results[:]:
if r.ready():
print('{} is ready'.format(r))
accumulate_chrBased_simBased_result(r.get(),accumulatedSignalArray,accumulatedCountArray)
results.remove(r)
pool.close()
pool.join()
print(accumulatedSignalArray)
print(accumulatedCountArray)

相关内容

  • 没有找到相关文章