如何从 R 中的部分非结构化 txt 文件中提取表?



我有一个txt文件的URL列表。txt 文件的结构使得某些部分是纯文本,某些部分是表格。我想提取表并将它们导出到数据框。下面是一个网址示例:

https://www.sec.gov/Archives/edgar/data/1000275/0001140361-13-007449.txt

txt 文件的结构使得表以<TABLE>开头并以</TABLE>结尾。我想合并所有表格。我尝试过使用 read.delim,但我不知道如何将其用于表格。下面是预期输出的示例。我将不胜感激有关如何进行我的项目的任何指导。

Example of current df:
+----+--------------------------------------------------------------------------+
| ID |                                   URL                                    |
+----+--------------------------------------------------------------------------+
|  1 | https://www.sec.gov/Archives/edgar/data/1000097/0000919574-13-001835.txt |
|  2 | https://www.sec.gov/Archives/edgar/data/1000275/0001140361-13-007449.txt |
|  3 | https://www.sec.gov/Archives/edgar/data/1000742/0000898432-13-000218.txt |
+----+--------------------------------------------------------------------------+
Example of txt file from url:
text text text
text text text
text text text
<TABLE>
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
|   NAME OF ISSUER    | TITLE OF CLASS |   CUSIP   | VALUE (x1000 | SHRS OR PRN AMT | SH/PRN | PUT/CALL | INVESTMENT DISCRETION | OTHER MNGRS | VOTING AUTHORITY |
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
| ABBVIE INC          | COM            | 00287Y109 |        1,547 |          45,300 | SHS    |          | Shared-Defined        | 1/2/3       |           45,300 |
| ABERCROMBIE & FITCH | CL A           | 002896207 |        4,797 |         100,000 | SHS    |          | Shared-Defined        | 1/2/3       |          100,000 |
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
</TABLE>
<TABLE>
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
|   NAME OF ISSUER    | TITLE OF CLASS |   CUSIP   | VALUE (x1000 | SHRS OR PRN AMT | SH/PRN | PUT/CALL | INVESTMENT DISCRETION | OTHER MNGRS | VOTING AUTHORITY |
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
| ABBVIE INC          | COM            | 00287Y109 |        1,547 |          45,300 | SHS    |          | Shared-Defined        | 1/2/3       |           45,300 |
| ABERCROMBIE & FITCH | CL A           | 002896207 |        4,797 |         100,000 | SHS    |          | Shared-Defined        | 1/2/3       |          100,000 |
+---------------------+----------------+-----------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
</TABLE>

Expected output:
+----+----------------+----------------+-------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
| ID | NAME OF ISSUER | TITLE OF CLASS | CUSIP | VALUE (x1000 | SHRS OR PRN AMT | SH/PRN | PUT/CALL | INVESTMENT DISCRETION | OTHER MNGRS | VOTING AUTHORITY |
+----+----------------+----------------+-------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+
|  1 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
|  1 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
|  1 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
|  2 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
|  2 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
|  2 | x              | x              | x     | x            | x               | x      | x        | x                     | x           | x                |
+----+----------------+----------------+-------+--------------+-----------------+--------+----------+-----------------------+-------------+------------------+

这是一个粗略的解决方案。

# Read the text files from the web
fileContents <- readr::read_file("https://www.sec.gov/Archives/edgar/data/1000275/0001140361-13-007449.txt")
# Extract the tables.  The regex isn't quite right, as it includes the starting <TABLE>
# and ending </TABLE> tags, but more complicated regexes failed.  Regex isn't my
# strong point, and I can handle the extra work
tables <- stringr::str_extract_all(
fileContents, 
stringr::regex("(?s)<TABLE>(.*?)</TABLE>", 
multiline=TRUE, 
dotall=TRUE
)
)
# Function to process a single tibble
toTibble <- function(y) {
lines <- str_split_fixed(y, "n", n=Inf)
colStarts <- c()
colEnds <- c()
# Scroll through to final table header
for (i in 1:(length(lines)-1)) { # Final line is '</TABLE>' because of initial regex
# Could probably to this with regexes, but my head is hurting
if (any(!is.na(stringr::str_locate(lines[i], "<\w>")))) {
# Define column widths based on locations of type markers.  THIS IS AN ASSUMPTION
colStarts <- stringr::str_locate_all(lines[i], "<\w>")[[1]][,"start"]
for (i in 1:(length(colStarts)-1)) colEnds[i] <- colStarts[i+1] -1
colEnds[length(colStarts)] <- stringr::str_length(lines[i])
lines <- lines[(i+1):(length(lines)-1)]
data <- dplyr::bind_rows(
lapply(
lines,                   # For each data line  
function(line) 
tibble::enframe(       # Split in to columns and convert to a tibble of name/value pairs
stringr::str_trim(
stringr::str_sub(
line, 
colStarts, 
colEnds
)
)
) %>%                  # Convert from name/value pairs to columns
tidyr::pivot_wider(
values_from="value", 
names_from="name", 
names_prefix="Column"
)
)
)
# Finished
return(data)
}
}
}

要处理单个文件:

firstTable <- toTibble(tables[[1]][[1]])
firstTable

# A tibble: 59 x 12
Column1  Column2       Column3   Column4 Column5 Column6 Column7 Column8 Column9 Column10 Column11 Column12
<chr>    <chr>         <chr>     <chr>   <chr>   <chr>   <chr>   <chr>   <chr>   <chr>    <chr>    <chr>   
1 AAR CORP COM           000361105 190     10158   SH      ""      DEFINED "2"     10158    0        0       
2 AAR CORP COM           000361105 15      803     SH      ""      DEFINED "3"     0        0        803     
3 AAR CORP COM           000361105 37      2000    SH      ""      DEFINED "5"     2000     0        0       
4 AAR CORP COM           000361105 78      4200    SH      ""      DEFINED ""      4200     0        0       
5 ABB LTD  SPONSORED ADR 000375204 2164    104112  SH      ""      DEFINED "3"     257      0        103855  
6 ABB LTD  SPONSORED ADR 000375204 10774   518215  SH      ""      DEFINED "5"     518215   0        0       
7 ABB LTD  SPONSORED ADR 000375204 64      3100    SH      ""      DEFINED "7"     0        3100     0       
8 ABB LTD  SPONSORED ADR 000375204 1044    50200   SH      ""      DEFINED "8"     50200    0        0       
9 ABB LTD  SPONSORED ADR 000375204 9       410     SH      ""      DEFINED "9"     410      0        0       
10 ABB LTD  SPONSORED ADR 000375204 103     4958    SH      ""      DEFINED "15"    4958     0        0       
# … with 49 more rows

在我的系统上

system.time({firstTable <- toTibble(tables[[1]][[1]])})
user  system elapsed 
0.843   0.004   0.849 

所以在一秒钟内处理一个表。

length(tables[[1]])
[1] 299

文件中只有不到 300 个表,因此将所有表绑定到一个 tibble 中

alldata <- bind_rows(lapply(tables[[1]], function(t) toTibble(t)))

提取表大约需要五分钟,再加上将它们全部绑定在一起。 [此代码未经过测试或计时。

进入此阶段后,您可以使用列类型和名称来获得所需的内容。 这应该是直截了当的。

相关内容

  • 没有找到相关文章

最新更新