网格搜索查找AUC的参数



我正在努力寻找SVM的参数,这给了我最好的AUC。但我在sklearn中找不到任何AUC的评分函数。有人有主意吗?这是我的代码:

parameters = {"C":[0.1, 1, 10, 100, 1000], "gamma":[0.1, 0.01, 0.001, 0.0001, 0.00001]}
clf = SVC(kernel = "rbf")
clf = GridSearchCV(clf, parameters, scoring = ???)
svr.fit(features_train , labels_train)
print svr.best_params_

那我能用什么???以获得高AUC分数的最佳参数?

您可以简单地使用:

clf = GridSearchCV(clf, parameters, scoring='roc_auc')

您可以自己制作任何得分手:

from sklearn.metrics import make_scorer
from sklearn.metrics import roc_curve, auc
# define scoring function 
def custom_auc(ground_truth, predictions):
# I need only one column of predictions["0" and "1"]. You can get an error here
# while trying to return both columns at once
fpr, tpr, _ = roc_curve(ground_truth, predictions[:, 1], pos_label=1)    
return auc(fpr, tpr)
# to be standart sklearn's scorer        
my_auc = make_scorer(custom_auc, greater_is_better=True, needs_proba=True)
pipeline = Pipeline(
[("transformer", TruncatedSVD(n_components=70)),
("classifier", xgb.XGBClassifier(scale_pos_weight=1.0, learning_rate=0.1, 
max_depth=5, n_estimators=50, min_child_weight=5))])
parameters_grid = {'transformer__n_components': [60, 40, 20] }
grid_cv = GridSearchCV(pipeline, parameters_grid, scoring = my_auc, n_jobs=-1,
cv = StratifiedShuffleSplit(n_splits=5,test_size=0.3,random_state = 0))
grid_cv.fit(X, y)

有关更多信息,请查看此处:sklearn make_scorer

使用下面的代码,它将为您提供参数的所有列表

import sklearn
sklearn.metrics.SCORERS.keys()

选择要使用的适当参数

在您的情况下,以下代码将工作

clf = GridSearchCV(clf, parameters, scoring = 'roc_auc')

我还没有尝试过,但我相信您想使用sklearn.metrics.roc_auc_score

问题是,它不是一个模型得分手,所以你需要建立一个。类似于:

from sklearn.metrics import roc_auc_score
def score_auc(estimator, X, y):
y_score = estimator.predict_proba(X)  # You could also use the binary predict, but probabilities should give you a more realistic score.
return roc_auc_score(y, y_score)

并将此函数用作GridSearch中的评分参数。

相关内容

  • 没有找到相关文章

最新更新